Abstract:
Logic may transmit or receive communications that hop frequencies in response to trigger events across a large bandwidth. Logic may generate a communication with a contiguous or non-contiguous bandwidth based upon frequency segments of 80 and/or 160 MHz. Logic may generate a communication with a contiguous bandwidth of 480 MHz. Logic may generate a communication with a non-contiguous bandwidth of 480 MHz. Logic may transmit or receive communications with a 480 MHz bandwidth that hop across a 3 GigaHertz (GHz) bandwidth of frequency channels. Logic may determine a channel-hopping pattern. Logic may hop frequency channels after each link transmission. Logic may hop channels after a fixed time interval. And logic may hop frequency channels in response to another triggering event.
Abstract:
Embodiments of a master station and method for communicating with a plurality of high-efficiency Wi-Fi (HEW) devices in a wireless network are generally described herein. In some embodiments, the master station may contend for a wireless medium during a contention period to receive control of the medium for an HEW control period, and transmit an HEW control and schedule transmission at the beginning of the HEW control period. The HEW control and schedule transmission may include a schedule indicating channel resources for communications with the HEW devices during the HEW control period in accordance with a non-contention based multiple access technique. The channel resources indicated in the HEW control and schedule transmission may comprise subspaces within a wideband legacy channel bandwidth. Transmissions on HEW channels during the HEW control period may have symbol times aligned within each legacy channel for legacy-device coexistence.
Abstract:
Embodiments of a high-efficiency (HE) communication station and method for HE communication in a wireless network are generally described herein. The HE communication station may communicate 4× longer-duration OFDM symbols on channel resources in accordance with an OFDMA technique. The channel resources may comprise one or more resource allocation units with each resource allocation unit having a predetermined number of data subcarriers. The station may also configure the resource allocation units in accordance with one of a plurality of subcarrier allocations for one of a plurality of interleaver configurations. The station may process the longer-duration OFDM symbols with a 512-point fast-Fourier Transform (FFT) for communication over a 40 MHz channel bandwidth comprising a 40 MHz resource allocation unit, and with a 1024-point FFT for communication over an 80 MHz channel bandwidth comprising either two 40 MHz resource allocation units or one 80 MHz resource allocation unit.
Abstract:
A high-efficiency wireless local-area network (HEW) device including transceiver circuitry and processing circuitry is disclosed. The transceiver circuitry and processing circuitry may be configured to encode or decode a packet using a low-density parity check (LDPC) code four times longer than a legacy LDPC code and in accordance with a channel code, and to transmit or receive the packet. The LDPC code may be four times longer than the legacy LDPC code. The LDPC may be 7776 bits and the legacy LDPC code may be 1944 bits. The packet may be transmitted or received in accordance with 1024 QAM. The channel code may be 1/2, 2/3, 3/4, or 5/6. The LDPC subcarrier mapping may have an increased distance between sub-carriers compared with a legacy Institute of Electrical and Electronic Engineers 802.11 standard.
Abstract:
Embodiments of a master station and method for communicating with a plurality of high-efficiency Wi-Fi (HEW) devices in a wireless network are generally described herein. In some embodiments, the master station may contend for a wireless medium during a contention period to receive control of the medium for an HEW control period, and transmit an HEW control and schedule transmission at the beginning of the HEW control period. The HEW control and schedule transmission may include a schedule indicating channel resources for communications with the HEW devices during the HEW control period in accordance with non-contention based multiple access technique. The channel resources indicated in the HEW control and schedule transmission may comprise subspaces within a wideband legacy channel bandwidth. Transmissions on HEW channels during the HEW control period may have symbol times aligned within each legacy channel for legacy-device coexistence.
Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels are generally described herein. An access point is configured to operate as part of a basic-service set (BSS) that includes a plurality of high-efficiency WLAN (HEW) stations and a plurality of legacy stations. The BSS operates on a primary channel and one or more secondary channels. In accordance with some embodiments, the access point may communicate with one or more of the HEW stations on one or more of the secondary channels in accordance with a scheduled OFDMA communication technique when the primary channel is utilized for communication with one or more of the legacy devices.
Abstract:
Apparatuses, methods, and computer readable media are disclosed. A HE station may include circuitry. The circuitry may be configured to: generate a HE packet with a short preamble format or a long preamble format, wherein the HE packet comprises one or more legacy signal (L-SIG) fields followed by one or more HE signal fields (HE-SIG) and an HE long-training field (HE-LTF); and configure the HE packet to indicate whether the HE packet is configured with the short preamble format or the long preamble format. The HE packet may be configured with the short preamble format or the long preamble format based on one from the following group: a symbol after the L-SIG fields, a L-SIG polarity of a repeated L-SIG, a number of times the L-SIG fields is repeated, or a length field of one of the one or more L-SIG fields.
Abstract:
Apparatuses, computer readable media, and methods for indicating a resource allocation are disclosed. An apparatus of a high-efficiency wireless local area network (HEW) master station is disclosed. The HEW master station includes circuitry configured to generate a resource allocation for HEW stations, where the resource allocation includes a group identification and an index into a table. The circuitry is further configured to transmit the resource allocation to the HEW stations. The table may be a permutation table that indicates a sub-channel of a bandwidth for each of the HEW stations. The HEW master station may be configured to operate in accordance with orthogonal frequency division multi-access (OFDMA). The resource allocation may be part of a trigger frame that includes a duration for an uplink or downlink transmission opportunity, and the circuitry may be further configured to transmit data to the HEW stations in accordance with the resource allocation.
Abstract:
Example systems, methods, and devices for channel access in dense wireless networks are discussed. More specifically, methods may include transmitting one or more trigger frames from an access point to one or more communication stations, the one or more trigger frames comprising a plurality of components, the plurality of components indicating whether trigger frames within a beacon interval are scheduled in a periodic or aperiodic manner, and if periodic trigger frames are scheduled, then indicating a countdown to the next trigger frame, and if aperiodic trigger frames are scheduled, then indicating the time to the next trigger frame scheduled by the access point. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
Abstract:
Embodiments of master station and method for high-efficiency WLAN (HEW) communication are generally described herein. In some embodiments, the master station is configured for HEW communication in accordance with an IEEE 802.11ax technique. The master station may transmit an indication to one or more of a plurality of HEW stations to indicate which one of a plurality of 20 MHz channels to monitor for a HEW signal field. The master station may configure the HEW signal field to indicate which of a plurality of subchannels of the indicated 20 MHz channel is allocated to the HEW stations for communication. The master station may transmit the configured HEW signal field in the indicated one of the 20 MHz channels and may communicate with the HEW stations on the indicated subchannels in accordance with an orthogonal-frequency divisional multiple access (OFDMA) technique.