Abstract:
Wireless devices, methods, and computer-readable media for transmitting and receiving beacon frames are disclosed. A master station is disclosed. The master station may include circuitry configured to operate in accordance with orthogonal frequency division multiple access (OFDMA) on a plurality of sub-channels and a primary channel. The circuitry may be further configured to assign a high-efficiency wireless local-area network (HEW) station to a sub-channel and transmit a legacy beacon on the primary channel with a first period. The circuitry may be further configured to transmit a HEW beacon on the sub-channel with a second period, wherein the second period is greater than the first period. The circuitry may be further configured to determine that the HEW station has data at the master station, and to transmit the HEW beacon on the sub-channel with an indication that the HEW station has the data. A HEW station is disclosed for receiving HEW beacons.
Abstract:
Wireless devices, methods, and computer readable media for transmitting and receiving beacon frames are disclosed. A HEW device may include circuitry configured to: operate in accordance with OFDMA on a plurality of subchannels and a primary channel, and transmit a first beacon on the primary channel to one or more legacy devices. The circuitry may be further configured to transmit a second beacon on the plurality of subchannels to one or more HEW devices. The first beacon may be an 802.11 legacy beacon and the second beacon may be a HEW beacon. A HEW device may include circuitry configured to: tune to an assigned subchannel; and receive a HEW beacon on the assigned subchannel. The circuitry may be configured to: enter a power saving mode; leave the power saving mode; and receive another HEW beacon on the assigned subchannel to synchronize the HEW device with the AP.
Abstract:
Various embodiments are generally directed to an apparatus, method and other techniques to determine a bandwidth in a frequency band to communicate information to stations, determine an Orthogonal Frequency-Division Multiple Access (OFDMA) tone allocation scheme based on the bandwidth, the OFDMA tone allocation scheme to include one or more resource units each comprising a plurality of tones and each having a fixed location in the bandwidth, and communicate information to the stations based on the OFDMA tone allocation scheme.
Abstract:
Example systems, methods, and devices for channel access in dense wireless networks are discussed. More specifically, methods may include transmitting one or more trigger frames from an access point to one or more communication stations, the one or more trigger frames comprising a plurality of components, the plurality of components indicating whether trigger frames within a beacon interval are scheduled in a periodic or aperiodic manner, and if periodic trigger frames are scheduled, then indicating a countdown to the next trigger frame, and if aperiodic trigger frames are scheduled, then indicating the time to the next trigger frame scheduled by the access point. Methods, apparatus, and systems described herein can be applied to 802.11ax or any other wireless standard.
Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in accordance with a scheduled OFDMA technique on secondary channels are generally described herein. An access point is configured to operate as part of a basic-service set (BSS) that includes a plurality of high-efficiency WLAN (HEW) stations and a plurality of legacy stations. The BSS operates on a primary channel and one or more secondary channels. In accordance with some embodiments, the access point may communicate with one or more of the HEW stations on one or more of the secondary channels in accordance with a scheduled OFDMA communication technique when the primary channel is utilized for communication with one or more of the legacy devices.
Abstract:
Methods, apparatuses, and computer readable media for signaling high-efficiency packet formats using a legacy portion of the preamble in wireless local-area networks are disclosed. A high-efficiency (HE) wireless local area network (HEW) device including circuitry is disclosed. The circuitry may be configured to generate a HE packet comprising a legacy signal field (L-SIG) followed by one or more HE signal fields, and configure the L-SIG to signal to a second HEW device either a first packet format of the HE packet or a second packet format of the HE packet, where a length of the L-SIG modulo 3 is used to signal the first packet format or the second packet format. The circuitry may be configured to generate a duplicated L-SIG field with a polarity difference to indicate a third packet configuration of the HE packet or a fourth packet configuration of the HE packet.
Abstract:
Embodiments of a master station and method for high-efficiency Wi-Fi (HEW) communication using a multi-device HEW preamble are generally described herein. In some embodiments, the master station may select a number of long-training fields (LTFs) to be included in the multi-device HEW preamble of an HEW frame. The HEW frame may comprise a plurality of links for transmission of a plurality of streams. The master station may transmit the selected number of LTFs sequentially as part of the HEW preamble and transmit a plurality of data fields to scheduled stations during an HEW control period. Each data field may correspond to one of the links and may comprise one or more streams. The selection of the number of LTFs to be included in the HEW preamble may be based on a maximum number of streams to be transmitted on a single link.
Abstract:
Embodiments of a packet structure for frequency offset estimation and method for UL MU-MIMO communication in high-efficiency Wi-Fi (HEW) are generally described herein. In some embodiments, the packet structure may comprise a short training field (STF), a number of long-training fields (LTFs) following the STF, a signal field (SIGB)to follow the LTFs, and a data field to follow the signal field. The data field may comprise an UL MU-MIMO transmission from a plurality of scheduled stations. The number of LTFs may be equal to or greater than a number of data streams as part of the UL MU-MIMO transmission, and the plurality of scheduled stations may share the number of LTFs by transmitting on different orthogonal tone sets.
Abstract:
Embodiments of a master station and method for high-efficiency Wi-Fi (HEW) communication using traveling pilots are generally described herein. In some embodiments, the master station is arranged for communicating with a plurality of HEW and may be configured to transmit, during an initial portion of an HEW control period, a master-sync transmission that includes a multi-device HEW preamble arranged to signal and identify data fields for a plurality of scheduled HEW stations. The master station may transmit during the HEW control period the data fields with traveling pilots to the scheduled HEW stations. The master station may also receive data fields with traveling pilots transmitted by the scheduled HEW stations during the HEW control period. The traveling pilots may comprise pilot signals that are shifted among orthogonal-frequency multiplexed (OFDM) subcarriers during transmission of one or more of the data fields.
Abstract:
Embodiments of a high-efficiency WLAN (HEW) master station and method for communicating in a Wireless Network are generally described herein. In some embodiments, the HEW master station comprises a receiver configured to receive an uplink multi-user multiple-input multiple-output (MU-MIMO) transmission from a plurality of scheduled HEW stations. The uplink MU-MIMO transmission may comprise at least an HEW short-training field (STF) (HEW-STF) transmitted by each of the scheduled HEW stations. The HEW-STFs received from the HEW stations are distinguishable. The master station may process the HEW-STFs received from the scheduled HEW stations to set receiver gain for reception of UL-MIMO data from the scheduled HEW stations. In some embodiments, a single automatic gain control (AGC) setting may be determined from the combined HEW-STF resulting in improved receiver performance in UL MU-MIMO.