Abstract:
A system may include a chamber with a main sub-chamber and a first porous membrane separating a first sub-chamber from the main sub-chamber. The system may include a fluid in the chamber and an input directing inflow into main sub-chamber proximate an entry end of the chamber. The system may include a first output permitting outflow from the first sub-chamber proximate an exit end of the chamber wherein a molecule entering at the entry end must traverse a length of the chamber to exit at the exit end.
Abstract:
Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
Abstract:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
Abstract:
A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
Abstract:
A technique includes providing a nanodevice. A gate electrode structure has nanochannels with a first end connected to a first common trench and a second end connected to a second common trench. A gate electrode extends laterally as a continuous line on the gate electrode structure and is formed in each of the nanochannels. The gate electrode forms a separate nano-ring electrode around a partial circumference inside each of the nanochannels. The gate electrode is parallel to the first and second common trenches and is perpendicular to the nanochannels.
Abstract:
A nanodevice includes a reservoir filled with conductive fluid and a membrane separating the reservoir. A nanopore is formed through the membrane having electrode layers separated by insulating layers. A certain electrode layer has a first type of organic coating and a pair of electrode layers has a second type. The first type of organic coating forms a motion control transient bond to a molecule in the nanopore for motion control, and the second type forms first and second transient bonds to different bonding sites of a base of the molecule. When a voltage is applied to the pair of electrode layers a tunneling current is generated by the base in the nanopore, and the tunneling current travels via the first and second transient bonds formed to be measured as a current signature for distinguishing the base. The motion control transient bond is stronger than first and second transient bonds.
Abstract:
A mechanism is provided for ratcheting a double strand molecule. The double strand molecule is driven into a Y-channel of a membrane by a first voltage pulse. The Y-channel includes a stem and branches, and the branches are connected to the stem at a junction. The double strand molecule is slowed at the junction of the Y-channel based on the first voltage pulse being weaker than a force required to break a base pair of the double strand molecule. The double strand molecule is split into a first single strand and a second single strand by driving the double strand molecule into the junction of the Y-channel at a second voltage pulse.
Abstract:
A nanosensor for detecting molecule characteristics includes a membrane having an opening configured to permit a charged carbon nanotube to pass but to block a molecule attached to the carbon nanotube. The opening is filled with an electrolytic solution. An electric field generator is configured to generate an electric field relative to the opening to drive the charged carbon nanotubes through the opening. A sensor circuit is coupled to the electric field generator to sense current changes due to charged carbon nanotubes passing into the opening, and to bias the electric field generator to determine a critical voltage related to a force of separation between the carbon nanotube and the molecule.
Abstract:
A semi-empirical water model based upon an xTB model modified with an energy function (xTB-M) is capable of temperature-dependent predictions of chemical reactions in water. The unmodified xTB model does not provide accurate predictions of chemical reactions in water because the model is incapable of correctly reproducing the caging effect that occurs during chemical reactions in aqueous solutions; thus, chemical reactions simulated with the unmodified model have water density values that are higher than the experimental water density values. The energy function of the xTB-M model corrects the water densities in the unmodified model by accurately calculating the hydrophobic forces between oxygen-pairs in a water simulation thus producing a semi-empirical water model with accurate water density values. By outfitting the water simulation with an NPT or NVT ensemble, the xTB-M model is able to accurately predict the behavior and stability of chemical reactions in water at different temperatures.
Abstract:
A gas capture system is configured to purify gas streams. The gas capture system includes a first capture system including a plurality of first chambers interconnected by a first path. Each first chamber includes a first adsorbent. The gas capture system further includes a second capture system including a plurality of second chambers interconnected by a second path. Each second chamber includes a second adsorbent. The gas capture system further includes a third path connecting each first chamber to the second path such that a first output of the first capture system is input into the second capture system. The gas capture system further includes a fourth path connecting each second chamber to the first path such that a second output of the second capture system is input into the first capture system.