Abstract:
A method and/or system for managing a database that stores space-time context objects is provided. The system receives a query range in a multi-dimensional space. The system maps the query range into a set of fragments of a space-filling curve that fills the multi-dimensional space in all dimensions of the multi-dimensional space. The system uses each mapped fragment in the set of mapped fragments as a key to query the database for space-time context objects that are mapped to the space-filling curve. The system queries the database by identifying one or more context objects that intersect the mapped fragment at the space-filling curve.
Abstract:
Systems and methods training a model are disclosed. In the method, training data is obtained by a deep neural network (DNN) first, the deep neural network comprising at least one hidden layer. Then features of the training data are obtained from a specified hidden layer of the at least one hidden layer, the specified hidden layer being connected respectively to a supervised classification network for classification tasks and an autoencoder based reconstruction network for reconstruction tasks. And at last the DNN, the supervised classification network and the reconstruction network are trained as a whole based on the obtained features, the training being guided by the classification tasks and the reconstruction tasks
Abstract:
A method, system, and computer program product, include receiving a plurality of requests for dynamic context information from a plurality of road segments, determining whether the plurality of road segments are included in a same cluster of road segments in a road network generated by clustering road segments in the road network based on connectivity of the road network, and consolidating the plurality of requests to generate a consolidated request in response to determining that the plurality of road segments are included in the same cluster.
Abstract:
A vehicle domain multi-level parallel buffering and context-based streaming data pre-processing system includes a first data processing level and a second data processing level. The first data processing level includes a first-level buffer configured to buffer data provided from a plurality of raw data streams output from a plurality of vehicles. The second data processing level includes an electronic task-queue-dictionary (TQD) module and a plurality of second-level data processing buffers. The TQD module is configured to create a plurality of tasks in response to receiving a serial data stream output from the first-level buffer. The TQD module is further configured to assign each task to a corresponding second-level buffer, and separate the serial data stream into individual data values that are delivered to a specific second-level buffer based on the task so as to generate a multi-level parallel context-based buffering operation.
Abstract:
A mechanism is provided in a data processing system for distributed tree learning. A source processing instance distributes data record instances to a plurality of model update processing items. The plurality of model update processing items determine candidate leaf splitting actions in a decision tree in parallel based on the data record instances. The plurality of model update processing items send the candidate leaf splitting actions to a plurality of conflict resolve processing items. The plurality of conflict resolve processing items identifies conflict leaf splitting actions. The plurality of conflict resolve processing items applies tree structure changes to the decision tree in the plurality of model update processing items.
Abstract:
A method and system to identify a time lagged indicator of an event to be predicted are described. The method includes receiving information including an indication of a factor, the factor being a different event than the event to be predicted, and identifying a window period within which the event is statistically correlated with the factor. The method also includes collecting data for a duration of the window period, the data indicating occurrences of the factor and the event, and identifying a time lagged dependency of the event on the factor based on analyzing the data.
Abstract:
A method and an apparatus for determining a location of a mobile device. The location of a mobile device is determined accurately according to information which includes call data records of the mobile device. By employing a partial ellipse integral model, two physical world factors are taken into consideration in reducing the location uncertainty in call data records. The factors include: spatiotemporal constraints of the device's movement in the physical world and the telecommunication cell area's geometry information, which increase the accuracy of determining the location of a mobile device.
Abstract:
A method for recognizing a primitive in an image includes recognizing at least one primitive in the image to obtain at least one candidate shape of the at least one primitive, which at least one candidate shape has a respective confidence; determining whether the recognizing of the at least one primitive has a potential error based on the confidence; obtaining auxiliary information about the at least one primitive from a user in response to determining that the recognizing has the potential error; and re-recognizing the at least one primitive at least in part based on the auxiliary information.
Abstract:
A mechanism is provided for controlling the internal air-quality of a vehicle, including configuring a control policy that controls an internal air-quality of a vehicle and performing an action dictated by the control policy according to a window status of the vehicle.
Abstract:
Embodiments of the present invention may be directed toward a method, a system, and a computer program product of adaptive calibration of sensors through cognitive learning. In an exemplary embodiment, the method, the system, and the computer program product include (1) in response to receiving a data from at least one calibration sensor and data from an itinerant sensor, comparing the data from the at least one calibration sensor and the data from the itinerant sensor, (2) in response to the comparing, determining, by one or more processors, the accuracy of the itinerant sensor, (3) generating, by the one or more processors, one or more calibration parameters based on the determining and based on a machine learning associated with preexisting sensor information, and (4) executing, by the one or more processors, the one or more calibration parameters.