Abstract:
Method for removing bubbles from a molten substrate. The molten substrate from a furnace passes through a downtube to reach additional manufacturing tools, such as an extrusion bushing. One or more ultrasonic sensors are arranged along the downtube. The ultrasonic sensor(s) transmit ultrasonic energy into the molten substrate and measure a characteristic of the ultrasonic energy, such as a propagation time for the ultrasonic energy to be reflected back to the ultrasonic sensor(s). A bubble is detected when a change in the Characteristic of the ultrasonic energy is detected. When a bubble is detected, flow through the downtube is diverted to a duct to remove a slug of molten substrate that includes the bubble.
Abstract:
In an example, a method of repairing a pipeline includes isolating a section of a pipeline that includes a leak site. The method includes flooding the section of the pipeline with a plug formulation that includes artificial platelets and an ultraviolet (UV) photoinitiator. The section may be pressurized to induce migration of the artificial platelets to the leak site. The method also includes draining excess plug formulation from the section of the pipeline. The method further includes exposing the UV photoinitiator to UV light to form a gas impermeable seal at the leak site.
Abstract:
In an example, a silicone-based thermal interface material includes a thermally conductive material and a silicone-based polymeric material having a solubility parameter that is not less than 9.09 cal1/2 cm−3/2.
Abstract:
Embodiments of the disclosure generally provide flame retardant compositions and methods comprising organic polymers, mineral fillers, high surface area mineral fillers and process aids. Compositions of the disclosure additionally are comprised of high surface area hydrated metal carbonate fillers, including the mesoporous amorphous magnesium carbonate filler Upsalite. The filler's porous structure and high surface area provides high water capacity, enhanced physical and chemical interaction with a polymer in composite, lower by weight loadings of filler in a composite, as well as effective flame retardancy.
Abstract:
Embodiments generally relate to devices and methods for production of fibers and threads for use in electronic device manufacturing. Described here, fibers can be produced and manipulated using a dual-surfaced sizing material. The dual-surfaced sizing material has a surface which binds a fiber and a surface which binds a resin. Thus, the dual-surfaced sizing material can be left attached to the fibers without adversely affecting the resin binding in later production steps.
Abstract:
An automated multi-fluid cooling method is provided for cooling an electronic component(s). The method includes obtaining a coolant loop, and providing a coolant tank, multiple valves, and a controller. The coolant loop is at least partially exposed to outdoor ambient air temperature(s) during normal operation, and the coolant tank includes first and second reservoirs containing first and second fluids, respectively. The first fluid freezes at a lower temperature than the second, the second fluid has superior cooling properties compared with the first, and the two fluids are soluble. The multiple valves are controllable to selectively couple the first or second fluid into the coolant in the coolant loop, wherein the coolant includes at least the second fluid. The controller automatically controls the valves to vary first fluid concentration level in the coolant loop based on historical, current, or anticipated outdoor air ambient temperature(s) for a time of year.