Abstract:
A prepreg, a printed circuit board and a method of manufacturing the same are provided. A prepreg includes a core layer including nanofibers having a thickness in a range of 10 to 100 nm, a first insulating layer on a first surface of the core layer, and a second insulating layer on a second surface of the core layer.
Abstract:
An electronic device may have housing structures, electrical components, and other electronic device structures. Adhesive may be used to join electronic device structures. Adhesive may be dispensed as liquid adhesive and cured to form adhesive joints. Adhesive joints may be debonded. Chain reactions may be initiated by applying a localized initiator such as a chemical or localized energy to the adhesive. Once initiated, the chain reaction may spread throughout the adhesive to cure the adhesive, to globally change adhesive viscosity, or to weaken the adhesive to facilitate debonding. Local changes to adhesive may also be made such as local increases and decreases to adhesive viscosity. Chain reaction curing may be used to cure adhesive or debond adhesive that is hidden from view within gaps in the electronic device structures. Viscosity changes may be used to control where adhesive flows.
Abstract:
A soluble liquid crystal thermosetting oligomer containing polysilsesquioxane (POSS) includes a structure in which the POSS is combined with a main chain of a soluble liquid crystal thermosetting oligomer, an insulation composition comprising the same, and a substrate comprising and insulation layer using the insulation composition.
Abstract:
A circuit board structure and a manufacturing method thereof are provided. The circuit board structure includes a composite substrate, a dielectric layer, and a circuit layer. The composite substrate includes a metal substrate doped with non-metal powders and a metal buffer layer. A surface of the metal buffer layer opposite to the other surface of the metal buffer layer in contact with the metal substrate is treated by a polishing process. The dielectric layer is formed on the polished surface of the metal buffer layer, and the circuit layer is formed on the dielectric layer. Alternatively, a barrier layer is interposed between the dielectric layer and the metal buffer layer for preventing a diffusion effect of the metal buffer layer.
Abstract:
A circuit board structure and a manufacturing method thereof are provided. The circuit board structure includes a composite substrate, a dielectric layer, and a circuit layer. The composite substrate includes a metal substrate doped with non-metal powders and a metal buffer layer. A surface of the metal buffer layer opposite to the other surface of the metal buffer layer in contact with the metal substrate is treated by a polishing process. The dielectric layer is formed on the polished surface of the metal buffer layer, and the circuit layer is formed on the dielectric layer. Alternatively, a barrier layer is interposed between the dielectric layer and the metal buffer layer for preventing a diffusion effect of the metal buffer layer.
Abstract:
Provided is a nanofiber sheet that sufficiently refined by fibrillation and has high crystallinity of cellulose fiber and can realize a fiber-reinforced composite material exhibiting high transparency, a high elastic modulus, a low coefficient of linear thermal expansion, and high heat resistance and being high in flatness and smoothness. This nanofiber sheet includes crystalline cellulose as the main component and a lignin in an amount of from 10 ppm to 10 wt %. When a fiber/resin composite material obtained by impregnating the nanofiber sheet with tricyclodecane dimethacrylate, subjecting the impregnated product to UV-curing at 20 J/cm2, and heating the cured product in vacuum at 160° C. for two hours includes 60 wt % of the cured tricyclodecane dimethacrylate and 40 wt % of nanofiber, the following physical characteristics (i) to (iii) are satisfied: (i) the parallel light transmittance of light of a wavelength of 600 nm at a sheet thickness of 100 μm is 70% or more; (ii) the Young's modulus is 5.0 GPa or more; and (iii) the coefficient of linear thermal expansion is 20 ppm/K or less.
Abstract:
The present invention provides a composite material sheet wherein a filler is oriented in a given direction in an organic resin matrix by an electric field. The composite material sheet of the present invention 10 contains filler 1 and organic resin 3, and is characterized in that the filler 1 is dendritically aggregated in the organic resin matrix and oriented in the thickness direction. As a result, properties such as dielectric property, conductivity, thermal conductivity and the like can be strikingly improved as compared to conventional composite materials obtained by simply dispersing a filler.
Abstract:
A composite material including an arrangement of approximately aligned nanofilaments overlying at least another arrangement of approximately aligned nanofilaments, the longitudinal axis of the nanotubes of the first arrangement being approximately perpendicular to the longitudinal axis of the nanotubes of the other arrangement, and the arrangements forming at least one array. A resin material having nanoparticles dispersed throughout is disposed among the array(s) of nanofilaments, and cured, and openings may be formed into or through the composite material corresponding to spaces provided in the array of nanofilaments. A composite material according to embodiments forms a microelectronic substrate or some portion thereof, such as a substrate core.
Abstract:
The invention is directed to polyimide based adhesives having a coefficient of thermal expansion (“CTE”) equal to or below 50 ppm/° C. The adhesives of the present invention contain a polyimide base polymer present in the overall adhesive in an amount from 25 to 95 weight percent. The polyimide base polymer has a glass transition temperature (“Tg”) in a range of from about 150 to about 300° C. and typically has a coefficient of thermal expansion above 50 ppm/° C. The polyimide based adhesives of the invention also contain an aramid micro fiber filler in an amount from 5 to 75 weight percent, based upon the total weight of the polyimide based adhesive. The fiber filler can be used to lower CTE of the overall adhesive to match (or nearly match) the CTE of other materials like metal, silicon wafers, other polymers (including polyimide) and the like.
Abstract:
A highly reliable LED display apparatus is provided in which dust and other similar particles are prevented from entering spaces formed between light-emitting diodes and openings in a mask member provided on a circuit board. The LED display apparatus has the circuit board, the light-emitting diodes provided at predetermined positions thereon, and the mask member which is disposed approximately parallel to the circuit board. The mask member has openings at positions corresponding to the light-emitting diodes which are placed inside the respective openings. In the LED display apparatus described above, the openings of the mask member have fine projections on side surfaces thereof. The fine projections can be formed on the mask member by a flock processing technique.