Abstract:
Some embodiments relate to a semiconductor device that includes a body region of a field effect transistor structure formed in a semiconductor substrate between a drift region of the field effect transistor structure and a source region of the field effect transistor structure. The semiconductor substrate includes chalcogen atoms at an atom concentration of less than 1×1013 cm−3 at a p-n junction between the body region and the drift region, and at least part of the source region includes chalcogen atoms at an atom concentration of greater than 1×1014 cm−3. Additional semiconductor device embodiments and corresponding methods of manufacture are described.
Abstract:
Some embodiments relate to a method for forming a semiconductor device. The method includes forming a source region of a field effect transistor structure in a semiconductor substrate. The method further includes forming an oxide layer. The method also includes incorporating atoms of at least one atom type of a group of atom types into at least a part of the source region of the field effect transistor structure after forming the oxide layer. The group of atom types includes chalcogen atoms, silicon atoms and argon atoms.
Abstract:
A semiconductor device includes a first semiconductor region having first charge carriers of a first conductivity type and a second semiconductor region having second charge carriers. The first semiconductor region includes a transition region in contact with the second semiconductor region, the transition region having a first concentration of the first charge carriers, a contact region having a second concentration of the first charge carriers, wherein the second concentration is higher than the first concentration, and a damage region between the contact region and the transition region. The damage region is configured for reducing lifetime and/or mobility of the first charge carriers of the damage region as compared to the lifetime and/or the mobility of the first charge carriers of the contact region and the transition region.
Abstract:
A semiconductor device includes a first semiconductor region having first charge carriers of a first conductivity type and a second semiconductor region having second charge carriers. The first semiconductor region includes a transition region in contact with the second semiconductor region, the transition region having a first concentration of the first charge carriers, a contact region having a second concentration of the first charge carriers, wherein the second concentration is higher than the first concentration, and a damage region between the contact region and the transition region. The damage region is configured for reducing lifetime and/or mobility of the first charge carriers of the damage region as compared to the lifetime and/or the mobility of the first charge carriers of the contact region and the transition region.
Abstract:
A semiconductor device includes transistor cells formed along a first surface at a front side of a semiconductor body in a transistor cell area. A drift zone structure forms first pn junctions with body zones of the transistor cells. An auxiliary structure between the drift zone structure and a second surface at a rear side of the semiconductor body includes a first portion that contains deep level dopants requiring at least 150 meV to ionize. A collector structure directly adjoins the auxiliary structure. An injection efficiency of minority carriers from the collector structure into the drift zone structure varies along a direction parallel to the first surface at least in the transistor cell area.
Abstract:
A method of forming a transistor having a gate electrode includes forming a sacrificial layer over a semiconductor substrate, forming a patterning layer over the sacrificial layer, patterning the patterning layer to form patterned structures, forming spacers adjacent to sidewalls of the patterned structures, removing the patterned structures, etching through the sacrificial layer using the spacers as an etching mask and etching into the semiconductor substrate, thereby forming trenches in the semiconductor substrate, and filling a conductive material in the trenches in the semiconductor substrate to form the gate electrode.
Abstract:
A semiconductor device includes a first transistor cell including a first gate electrode in a first trench. The semiconductor device further includes a second transistor cell including a second gate electrode in a second trench, wherein the first and second gate electrodes are electrically connected. The semiconductor device further includes a third trench between the first and second trenches, wherein the third trench extends deeper into a semiconductor body from a first side of the semiconductor body than the first and second trenches. The semiconductor device further includes a dielectric in the third trench covering a bottom side and walls of the third trench.