摘要:
An insulated-gate field-effect transistor (100) provided along an upper surface of a semiconductor body contains a pair of source/drain zones (240 and 242) laterally separated by a channel zone (244). A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. Each source/drain zone includes a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E) laterally continuous with the main portion and extending laterally under the gate electrode. The lateral extensions, which terminate the channel zone along the upper semiconductor surface, are respectively largely defined by a pair of semiconductor dopants of different atomic weights. With the transistor being an asymmetric device, the source/drain zones constitute a source and a drain. The lateral extension of the source is then more lightly doped than, and defined with dopant of higher atomic weight, than the lateral extension of the drain.
摘要:
An insulated-gate field-effect transistor (100) provided along an upper surface of a semiconductor body contains a pair of source/drain zones (240 and 242) laterally separated by a channel zone (244). A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. Each source/drain zone includes a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E) laterally continuous with the main portion and extending laterally under the gate electrode. The lateral extensions, which terminate the channel zone along the upper semiconductor surface, are respectively largely defined by a pair of semiconductor dopants of different atomic weights. With the transistor being an asymmetric device, the source/drain zones constitute a source and a drain. The lateral extension of the source is defined with dopant of higher atomic weight than the lateral extension of the drain.
摘要:
In one aspect, a first region that includes a first Group IV semiconductor that has a bandgap and is doped with a first dopant of a first electrical conductivity type is formed. A pattern is created. The pattern controls formation of local crystal modifications in the first Group IV semiconductor in an array. An array of local crystal modifications is formed in the first Group IV semiconductor in accordance with the pattern. The local crystal modifications induce overlapping strain fields that increase the bandgap of the first Group IV semiconductor, create an energy band barrier against transport of minority carriers across the first region. A second region that includes a second Group IV semiconductor that has a bandgap and is doped with a second dopant of a second electrical conductivity type opposite the first conductivity type is formed. Semiconductor devices formed in accordance with this method also are described.
摘要:
A semiconductor device includes a first layer and a second layer over the first layer. The first and second layers are configured to form an electron gas layer at an interface of the first and second layers. The semiconductor device also includes an Ohmic contact and multiple conductive vias through the second layer. The conductive vias are configured to electrically couple the Ohmic contact to the electron gas layer. The conductive vias could have substantially vertical sidewalls or substantially sloped sidewalls, or the conductive vias could form a nano-textured surface on the Ohmic contact. The first layer could include Group III-nitride nucleation, buffer, and channel layers, and the second layer could include a Group III-nitride barrier layer.
摘要:
CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
摘要:
A method includes forming a non-continuous epitaxial layer over a semiconductor substrate. The substrate includes multiple mesas separated by trenches. The epitaxial layer includes crystalline Group III nitride portions over at least the mesas of the substrate. The method also includes depositing a dielectric material in the trenches. The method could also include forming spacers on sidewalls of the mesas and trenches or forming a mask over the substrate that is open at tops of the mesas. The epitaxial layer could also include Group III nitride portions at bottoms of the trenches. The method could further include forming gate structures, source and drain contacts, conductive interconnects, and conductive plugs over at least one crystalline Group III nitride portion, where at least some interconnects and plugs are at least partially over the trenches. The gate structures, source and drain contacts, interconnects, and plugs could be formed using standard silicon processing tools.
摘要:
Method and apparatus for fabricating semiconductor devices, for example, III-V semiconductor devices, having a desired substrate, for example, a silicon substrate. A method for fabricating semiconductor devices includes providing a semiconductor wafer that includes a plurality of semiconductor structures attached to a native substrate formed of a first substrate material, and a host substrate formed of a second substrate material. At least one subset of semiconductor structures of the plurality of semiconductor structures is transferred from the semiconductor wafer to the host substrate to provide a semiconductor device having a substrate formed of the second substrate material.
摘要:
CMOS image sensor having high sensitivity and low crosstalk, particularly at far-red to infrared wavelengths, and a method for fabricating a CMOS image sensor. A CMOS image sensor has a substrate, an epitaxial layer above the substrate, and a plurality of pixels extending into the epitaxial layer for receiving light. The image sensor also includes at least one of a horizontal barrier layer between the substrate and the epitaxial layer for preventing carriers generated in the substrate from moving to the epitaxial layer, and a plurality of lateral barrier layers between adjacent ones of the plurality of pixels for preventing lateral diffusion of electrons in the epitaxial layer.
摘要:
A method includes forming a first epitaxial layer over a semiconductor substrate and etching the first epitaxial layer to form multiple separated first epitaxial regions. The method also includes forming a second epitaxial layer over the etched first epitaxial layer. Each epitaxial layer includes at least one Group III-nitride, and the epitaxial layers collectively form a buffer. The method further includes forming a device layer over the buffer and fabricating a semiconductor device using the device layer. The second epitaxial layer could include second epitaxial regions substantially only on the first epitaxial regions. The second epitaxial layer could also cover the first epitaxial regions and the substrate, and the second epitaxial layer may or may not be etched. The device layer could be formed during the same operation used to form the second epitaxial layer.
摘要:
A method includes forming a non-continuous epitaxial layer over a semiconductor substrate. The substrate includes multiple mesas separated by trenches. The epitaxial layer includes crystalline Group III nitride portions over at least the mesas of the substrate. The method also includes depositing a dielectric material in the trenches. The method could also include forming spacers on sidewalls of the mesas and trenches or forming a mask over the substrate that is open at tops of the mesas. The epitaxial layer could also include Group III nitride portions at bottoms of the trenches. The method could further include forming gate structures, source and drain contacts, conductive interconnects, and conductive plugs over at least one crystalline Group III nitride portion, where at least some interconnects and plugs are at least partially over the trenches. The gate structures, source and drain contacts, interconnects, and plugs could be formed using standard silicon processing tools.