摘要:
An ion implantation method is disclosed in this invention. The disclosed method is for implanting a target wafer with ions extracted from an ion source traveling along an original ion beam path. The method includes steps of a) employing a set of deceleration electrodes disposed along the original ion beam path before the target wafer for decelerating and deflecting the ion beam to the target wafer; and b) employing a charged particle deflecting means disposed between the ion source and the set of deceleration electrodes for deflecting the ion beam away from original ion beam path and projecting to the set of electrodes with an incident angle for the set of electrodes to deflect the ion beam back to the original ion beam path for implanting the target wafer.
摘要:
A thin film deposition apparatus and method are disclosed in this invention. The method includes a step of providing a vacuum chamber for containing a thin-film particle source for generating thin-film particles to deposit a thin-film on the substrates. The method further includes a step of containing a substrate holder in the vacuum chamber for holding a plurality of substrates having a thin-film deposition surface facing the thin-film particle source. The method further includes a step of providing a rotational means for rotating the substrate holder to rotate each of the substrates exposed to the thin-film particles for depositing a thin film thereon. And, the method further includes a step of providing a lateral moving means for laterally moving and controlling a duration of exposure time across a radial direction for each of the substrates for controlling thickness uniformity of the thin-film deposited on each of the substrates.
摘要:
A new radio frequency (rf) linear accelerator (linac) is disclosed in this invention. The rf linac includes a plurality of resonators each includes an inductor circuit L(k), k=1,2,3, . . . , n′ where n′ is a second integer, wherein the inductor circuit connected to at least two electrodes E(j′), j′=1,2,3, . . . (n−1), for applying an accelerating rf voltage thereto. The rf linac further includes a plurality sets of transverse focusing lenses, represented by Lenses(j), where j=1,2,3, . . . n, and n is an integer, for guiding and focusing an ion beam. Each of the electrodes E(j′) disposed between and aligned with two sets of the transverse focusing lenses Lenses(J′) and Lenses(J′+1), j′=1,2,3, . . . (n−1), as a linear array. In a preferred embodiment, at least two of the adjacent electrodes E(j′) and E(j′+1) are connected to a same inductor circuit L(k). In another preferred embodiment, at least two of the adjacent electrodes E(j′) and E(j′+1) are connected to two different inductor circuits L(k1) and L(k2) where k1 and k2 are two different integers and k1 and k2 are smaller than n′. The energy gain from a resonator of this invention is twice or multiple of the energy gain from a single-electrode resonator with the same rf power efficiency.
摘要:
The present invention provides a method of extending, i.e. prolonging, the operating lifetime of hot cathode discharge ion source by utilizing and introducing a nitrogen-containing co-bleed gas into an ion implantation apparatus which contains at least a hot cathode discharge ion source and an ion implantation gas such as GeF4.
摘要:
Method and apparatus for causing ions to impact a workpiece implantation surface. A process chamber defines a chamber interior into which one or more workpieces can be inserted for ion treatment. An energy source sets up an ion plasma within the process chamber. A support positions one or more workpieces within an interior region of the process chamber so that an implantation surface of the one or more workpieces is positioned within the ion plasma. A pulse generator in electrical communication with the workpiece support applies electrical pulses for attracting ions to the support. One or more dosimetry cups including an electrically biased ion collecting surface are disposed around the workpiece support to measure implantation current. An implantation controller monitors signals from the one or more dosimetry cups to control ion implantation of the workpiece.
摘要:
A beam control assembly to shape a ribbon beam of ions for ion implantation includes a first bar, second bar, first coil of windings of electrical wire, second coil of windings of electrical wire, first electrical power supply, and second electrical power supply. The first coil is disposed on the first bar. The first coil is the only coil disposed on the first bar. The second bar is disposed opposite the first bar with a gap defined between the first and second bars. The ribbon beam travels between the gap. The second coil is disposed on the second bar. The second coil is the only coil disposed on the second bar. The first electrical power supply is connected to the first coil without being electrically connected to any other coil. The second electrical power supply is connected to the second coil without being electrically connected to any other coil.
摘要:
An ion implantation apparatus of high energy is disclosed in this invention. The new and improved system can have a wide range of ion beam energy at high beam transmission rates and flexible operation modes for different ion species. This high energy implantation system can be converted into a medium current by removing RF linear ion acceleration unit.
摘要:
A beam control assembly to shape a ribbon beam of ions for ion implantation includes a first bar, second bar, first coil of windings of electrical wire, second coil of windings of electrical wire, first electrical power supply, and second electrical power supply. The first coil is disposed on the first bar. The first coil is the only coil disposed on the first bar. The second bar is disposed opposite the first bar with a gap defined between the first and second bars. The ribbon beam travels between the gap. The second coil is disposed on the second bar. The second coil is the only coil disposed on the second bar. The first electrical power supply is connected to the first coil without being electrically connected to any other coil. The second electrical power supply is connected to the second coil without being electrically connected to any other coil.
摘要:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for forming a converging beam on AMU-non-dispersive plane therefrom. The ion implantation apparatus includes magnetic scanner prior to a magnetic analyzer for scanning the beam on the non-dispersive plane, the magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. A rectangular quadruple magnet is provided to collimate the scanned ion beam and fine corrections of the beam incident angles onto a target. A deceleration or acceleration system incorporating energy filtering is at downstream of the beam collimator. A two-dimensional mechanical scanning system for scanning the target is disclosed, in which a beam diagnostic means is build in.
摘要:
An ion implantation apparatus with multiple operating modes is disclosed. The ion implantation apparatus has an ion source and an ion extraction means for extracting a ribbon-shaped ion beam therefrom. The ion implantation apparatus includes a magnetic analyzer for selecting ions with specific mass-to-charge ratio to pass through a mass slit to project onto a substrate. Multipole lenses are provided to control beam uniformity and collimation. A two-path beamline in which a second path incorporates a deceleration or acceleration system incorporating energy filtering is disclosed. Finally, methods of ion implantation are disclosed in which the mode of implantation may be switched from one-dimensional scanning of the target to two-dimensional scanning.