Abstract:
Systems, methods, and media for transparently optimizing a workload of a containment abstraction are provided herein. Methods may include monitoring a workload of the containment abstraction, the containment abstraction being at least partially hardware bound, the workload corresponding to resource utilization of the containment abstraction, converting the containment abstraction from being at least partially hardware bound to being entirely central processing unit (CPU) bound by placing the containment abstraction in a memory store, based upon the workload, and allocating the workload of the containment abstraction across at least a portion of a data center to optimize the workload of the containment abstraction.
Abstract:
Systems and methods to manage workloads and hardware resources in a data center or cloud. In one embodiment, a method includes a data center having a plurality of servers in a network. The data center provides a virtual machine for each of a plurality of users, each virtual machine to use a portion of hardware resources of the data center. The hardware resources include storage and processing resources distributed onto each of the plurality of servers. The method further includes sending messages amongst the servers, some of the messages being sent from a server including status information regarding a hardware resource utilization status of that server. The method further includes detecting a request from the virtual machine to handle a workload requiring increased use of the hardware resources, and provisioning the servers to temporarily allocate additional resources to the virtual machine, wherein the provisioning is based on status information provided by one or more of the messages.
Abstract:
Techniques and systems for distracting a spinal disc space and supporting adjacent vertebrae are provided. Trial instruments are insertable into the disc space to determine a desired disc space height and to select a corresponding implant. Implants can be also be self-distracting and the implant providing the desired disc space height can be implanted in the spinal disc space.
Abstract:
A transceiver including a transmitter, a receiver, a first printed circuit board assembly, and a second printed circuit board assembly. The transmitter is configured to convert electrical signals to fiber optic signals. The receiver is configured to convert fiber optic signals to electrical signals. The first printed circuit board assembly is electrically coupled with the transmitter and configured to be electrically coupled with a host system via a first plurality of host interface pins. The second printed circuit board assembly is electrically coupled with the receiver and configured to be electrically coupled with the host system via a second plurality of host interface pins.
Abstract:
A transceiver with a housing, a transceiver receptacle, and a first and second adapter. The housing is configured for connection to a host. The transceiver receptacle is coupled to the housing, and the transceiver receptacle has a first side defining a first interface portion and a second side defining a second interface portion. The first adapter has a first connection portion configured to couple with the first interface portion. The second adapter has a second connection portion configured to couple with the second interface portion. The transceiver receptacle is configured to interface with a first front panel opening of a network device when the first and second adapters are not coupled with the transceiver receptacle. Also, the transceiver receptacle is configured interface with a second front panel opening of a network device when the first and second adapters are coupled with the transceiver receptacle. The first and second front panel openings on the network device are of different sizes.
Abstract:
Methods and instruments are provided for performing spinal disc space preparation and implant insertion in minimally invasive procedures. The instruments include cutting instruments and implant insertion instruments adapted for insertion through a minimally invasive access portal to a spinal disc space. The proximal portions of the instruments are adapted to facilitate viewing through a proximal end opening of the access portal with the instruments positioned through the access portal while also enhancing the surgeon's control of the distal working end of the instruments while in the disc space.