Abstract:
A semiconductor device and a method for manufacturing the same, the method comprising: providing a semiconductor substrate; forming a dummy gate area on the substrate, forming spacers on sidewalls of the gate area, and forming source and drain areas in the semiconductor substrate on both sides of the dummy gate area, the dummy gate area comprising an interface layer and a dummy gate electrode; forming a dielectric cap layer on the dummy gate area and source and drain areas; planarizing the device with the dielectric cap layer on the source and drain areas as a stop layer; further removing the dummy gate electrode to expose the interface layer; and forming replacement gate area on the interface layer. The thickness of the gate groove may be controlled by the thickness of the dielectric cap layer, and the replacement gates of desired thickness and width may be further formed upon requirements. Thus, the aspect ratio of the gate groove is reduced and a sufficient low gate resistance is ensured.
Abstract:
The present invention provides a semiconductor device. The semiconductor device comprises contact plugs that comprise a first contact plug formed by a first barrier layer arranged on the source and drain regions and a tungsten layer arranged on the first barrier layer; and second contact plugs comprising a second barrier layer arranged on both of the metal gate and the first contact plug and a conductive layer arranged on the second barrier layer. The conductivity of the conductive layer is higher than that of the tungsten layer. A method for forming the semiconductor device is also provided. The present invention provides the advantage of enhancing the reliability of the device when using the copper contact technique.
Abstract:
The present invention discloses a method for manufacturing a semiconductor device, comprising: forming an insulating isolation layer on a substrate; forming an insulating isolation layer trench in the insulating isolation layer; forming an active region layer in the insulating isolation layer trench; forming a semiconductor device structure in and above the active region layer; characterized in that the carrier mobility of the active region layer is higher than that of the substrate. Said active region is formed of a material different from that of the substrate, the carrier mobility in the channel region is enhanced, thereby the device response speed is improved and the device performance is enhanced. Unlike the existing STI manufacturing process, for the present invention, an STI is formed first, and then filling is performed to form an active region, thus avoiding the problem of generation of holes in STI, and improving the device reliability.
Abstract:
A semiconductor device comprises a substrate; a shallow trench isolation embedded in the substrate and forms at least one opening region; a channel region located in the opening region; a gate stack including a gate dielectric layer and a gate electrode layer, located above said channel region; a source/drain region located on both sides of the channel region, including a stress layer which provides strain for the channel region. A liner layer is provided between the shallow trench isolation and the stress layer, which serves as a crystal seed layer of the stress layer. A liner layer and a pad oxide layer are provided between the substrate and the shallow trench isolation. The liner layer is inserted between the STI and the stress layer of the source/drain region as a crystal seed layer or nucleating layer for epitaxial growth, thereby eliminating the STI edge effect during the source/drain strain engineering.
Abstract:
The present invention discloses a semiconductor device, comprising substrates, a plurality of gate stack structures on the substrate, a plurality of gate spacer structures on both sides of each gate stack structure, a plurality of source and drain regions in the substrate on both sides of each gate spacer structure, the plurality of gate spacer structures comprising a plurality of first gate stack structures and a plurality of second gate stack structures, wherein each of the first gate stack structures comprises a first gate insulating layer, a first work function metal layer, a second work function metal diffusion blocking layer, and a gate filling layer; Each of the second gate stack structures comprises a second gate insulating layer, a first work function metal layer, a second work function metal layer, and a gate filling layer, characterized in that the first work function metal layer has a first stress, and the gate filling layer has a second stress. Two metal gate layers of different types and/or intensity of stress are formed, respectively, thus different stresses are applied to the channel regions of different MOSFETs effectively and accurately, the device carrier mobility is enhanced simply and efficiently, and the device performance is also enhanced.
Abstract:
A method for improving the within die uniformity of the metal plug CMP process in the gate last route is provided. Before performing the CMP process for forming the metal plug, a metal etching process is applied, so that the step height between the metal layers in the contact hole area and the non-contact hole area is greatly reduced. Therefore, the relatively small step height will exert a significantly less effect on the following CMP process, so that the step height will be limitedly transferred to the top of metal plug after finishing CMP process. In this way, the recess on top of the metal plug is largely reduced, so that a flat top of the metal plug is obtained, and within die uniformity and electrical properties the device are improved.
Abstract:
A method for producing a contact through the pre-metal dielectric (PMD) layer of an integrated circuit, between the front end of line and the back end of line, and the device produced thereby are disclosed. The PMD layer includes oxygen. In one aspect, the method includes producing a hole in the PMD, depositing a conductive barrier layer at the bottom of the hole, depositing a CuMn alloy on the bottom and side walls of the hole, filling the remaining portion of the hole with Cu. The method further includes performing an anneal process to form a barrier on the side walls of the hole, wherein the barrier has an oxide including Mn. The method further includes performing a CMP process.
Abstract:
A method of manufacturing a FinFET semiconductor device is provided, wherein the semiconductor fins are formed in a parallel arrangement which intersects the gates arranged in parallel. The polycrystalline silicon layer is deposited and then converted into a single crystal silicon layer such that the single crystal silicon layer and the semiconductor fins are integrated in essence, i.e., the source/drain region in the semiconductor fins is raised and the top area of the semiconductor fins is extended. Subsequently, the single crystal silicon layer above the top of the semiconductor fins is converted into a metal silicide so as to form a source/drain region contact. The source/drain region contact in the present invention has a larger area than that in a conventional FinFET, which decreases the contact resistance and facilitates the formation of a self-aligned metal plug in the follow-up process.
Abstract:
One embodiment of present invention provides a method for manufacturing a semiconductor structure, which comprises: forming a gate stack on a semiconductor substrate and removing parts of the substrates situated on two sides of the gate stack; forming sidewall spacers on sidewalls of the gate stack and on sidewalls of the part of the substrate under the gate stack; forming doped regions in parts of the substrate on two sides of the gate stack, and forming a first dielectric layer to cover the entire semiconductor structure; selectively removing parts of the gate stack and parts of the first dielectric layer to form a channel region opening and source/drain region openings; forming a high K dielectric layer on sidewalls of the channel region opening; and implementing epitaxy process to form a continuous fin structure that spans across the channel region opening and the source/drain region openings.
Abstract:
A method for manufacturing a small-size fin-shaped structure, comprising: forming a first mask layer and a second mask layer on a substrate in sequence; etching the first mask layer and the second mask layer to form a hard mask pattern, wherein a second mask layer pattern is wider than a first mask layer pattern; eliminating the second mask layer pattern; and performing a dry etching of the substrate by taking the first mask layer pattern as a mask, so as to form a fin-shaped structure. According to the method for manufacturing a small-size fin-shaped structure of the present invention, firstly a large-size hard mask is prepared, then a width controllable small-size hard mask is prepared through a wet corrosion, and finally the bulk silicon wafer is etched, so as to obtain the required small-size fin-shaped structure, thereby improving the electrical properties and the integration level of the device, simplifying the processes and reducing the cost.