Date stone activated carbon supercapacitor

    公开(公告)号:US12243686B2

    公开(公告)日:2025-03-04

    申请号:US18332048

    申请日:2023-06-09

    Abstract: A supercapacitor including a gel electrolyte and two electrodes having a substrate, date stone activated carbon, a conductive carbon compound different from the date stone activated carbon, and a binding compound. A mixture of the date stone activated carbon, the conductive carbon compound, and the binding compound partially coats a surface of the substrate. The two electrodes are assembled in a symmetrical layered configuration with the surfaces coated with the mixture facing each other. The gel electrolyte is present between the surfaces coated with the mixture to form the supercapacitor. The gel electrolyte is a mixture of H2SO4, polyvinyl alcohol, and anthraquinone. Particles of the date stone activated carbon have a nanosheet morphology, and the nanosheets are stacked on top of each other to form a hierarchical structure.

    Colloidal suspension of gold nanoparticles

    公开(公告)号:US11118108B2

    公开(公告)日:2021-09-14

    申请号:US16222687

    申请日:2018-12-17

    Abstract: Monodisperse carboxylate functionalized gold nanoparticles comprising a capping agent layer of pamoic acid and colloidal suspensions thereof are disclosed. These gold nanoparticles have an average particle size of greater than 15 nm or less than 8 nm and demonstrate significant fluorescent properties. In addition, a method for the size controlled preparation of these monodisperse carboxylate functionalized gold nanoparticles wherein pamoic acid acts as both a reducing and capping agent and wherein the size of the particles can be controlled by the pH of the process is disclosed. In addition, a method for the size controlled preparation of these monodisperse carboxylate functionalized gold nanoparticles utilizing seed mediated growth is disclosed.

Patent Agency Ranking