Abstract:
An air purification apparatus (100) is disclosed that comprises a flow channel (110) extending between an inlet (111) and an outlet (113); a pollutant removal structure (120) and an air displacement apparatus (130) in the flow channel; a branched sensor channel (140) including: a first branch (142) extending between an ambient air port (141) and a further outlet (143) in the flow channel between the inlet and the air displacement apparatus; and a second branch (144) extending between the ambient air port and a further inlet (145) in the flow channel between the air displacement apparatus and the outlet, the first branch and second branch sharing a branch section; at least one sensor (150) in the shared branch section; a valve arrangement (161, 163) in the branched sensor channel adapted to exclusively disconnect the first branch from the flow channel in a first configuration and exclusively disconnect the second branch from the flow channel in a second configuration; and a controller (170) adapted to control the valve arrangement.
Abstract:
A coffee roasting apparatus including a compartment for holding coffee beans; a roasting element for roasting the coffee beans in the compartment; and a controller for controlling the roasting element. The controller is configured to control the roasting element as a function of a rate of change in the volume of the coffee beans residing in the compartment.
Abstract:
A sensor system is provided for measuring particle concentration and mass concentration in an aerosol. An optical sensor (33) is used for measuring a particle concentration and a mechanical sensor (32) is used for measuring a mass of collected particles. A particle concentration in the aerosol is monitored using the optical sensor (33), until detection of a particle generating event. Upon detection of a particle generating event, a mass measurement using the mechanical sensor (32) is performed and the mass measurement is used to calibrate the optical sensor (33). This approach enables the lifetime of the mechanical sensor to be extended, because it is only used when events are detected. The optical sensor, which typically is less accurate for mass sensing, is calibrated by the mechanical sensor.
Abstract:
A sample is added to a chamber (12) in which magnetic particles (P) are provided. The sample includes a target component (T) and the chamber (12) has a detection surface (122). A magnetic force is exerted on the magnetic particles (P) to attract the magnetic particles (P) to the detection surface (122). The bound magnetic particles that captured the target component (T) in the magnetic particles (P) and the unbound magnetic particles that captured no target component (T) in the magnetic particles (P) are held at the detection surface (122). At least part of the sample is drained out of the chamber (12) and a new sample added to the chamber (12). The magnetic force exerted on the magnetic particles (P) is altered to release the unbound magnetic particles from the detection surface (122). An amount of the bound magnetic particles that are held at the detection surface (122) are measured. The target component (T) is preconcentrated by repeating the steps of magnetically binding the target component (T) from the newly added sample and washing the detection surface (122) from unbound magnetic particles.
Abstract:
The invention proposes a sensor device (10) and a method of sampling. The method comprises the steps of: A. adding a sample to a chamber (12) in which magnetic particles (P) are provided, the sample including a target component (T) and the chamber (12) having a detection surface (122); B. exerting a magnetic force on the magnetic particles (P) to attract the magnetic particles (P) to the detection surface (122), wherein bound magnetic particles that capture the target component (T) in the magnetic particles (P) are held at the detection surface (122), and unbound magnetic particles that capture no target component (T) in the magnetic particles (P) are held at the detection surface (122) as well; C. altering the magnetic force exerted on the magnetic particles (P) to release the unbound magnetic particles from the detection surface (122); D. measuring the amount of the bound magnetic particles that are held at the detection surface (122); E. determining whether the amount of the bound magnetic particles that are held at the detection surface (122) is above a predetermined threshold; if no, performing the following steps of: exerting the magnetic force on the magnetic particles to attract the magnetic particles (P) to the detection surface (122); draining at least part of the sample out of the chamber (12) and adding a new sample to the chamber (12); altering the magnetic force exerted on the magnetic particles to release the unbound magnetic particles from the detection surface (122); and going back to perform the steps B to E. By doing so, the target component (T) is preconcentrated by repeating the steps of magnetically binding the target component (T) from the newly added sample and washing the detection surface (122) from unbound magnetic particles.
Abstract:
The invention relates to an apparatus and method for measuring calorie in a beverage. The apparatus comprises a chamber, an information obtaining unit, a concentration measuring unit, a processing unit and a display screen. The chamber is configured to contain the beverage. The information obtaining unit is configured to obtain beverage information indicating the volume or the weight of the beverage. The concentration measuring unit configured to measure the concentration of a predetermined substance in the beverage. The processing unit is configured to calculate the overall calorie according to the volume or the weight of the beverage and the measured concentration of the predetermined substance. The display screen is configured to display the overall calorie.
Abstract:
An apparatus for recording a sequence of video data signals on a record carrier has been proposed. The apparatus comprises input means (1) for receiving video data signals, generating means (100) for generating characteristic point information signals, processing means (100) for processing the characteristic point information signals for a plurality of characteristic points into a sequence of characteristic points information signals (CPI) and writing means (102) for writing the sequence of video data signals and the sequence of characteristic points information signals on the record carrier. The characteristic point information signals identify a characteristic point in the sequence of video data signals. Various measures are proposed in relation to the CPI aiming at improving quality of trickplay and random access playback operations.
Abstract:
Methods and apparatuses for determining levels of gaseous elements and optionally utilizing the determined levels to calibrate one or more sensors of an air purifier. For example, in some implementations a first image is captured of a colorimetric sensor device at the start of a sensing period and a second image is captured of the colorimetric sensor device at the end of the sensing period. The colorimetric sensor device includes at least one colorimetric sensor configured to change colors in response to reaction with a gaseous pollutant. Values may be determined based on the colors of the colorimetric sensor in the first and second images and the values may be utilized to determine a pollution value indicative of the amount of the gaseous pollutant to which the colorimetric sensor was exposed during the sensing period.
Abstract:
A particle sensing system is for sensing particles entrained in a fluid. The system comprises a flow channel having a longitudinal direction along which the fluid is to be passed, a heating arrangement for heating the fluid and thereby applying a positive thermophoretic force on the fluid in a direction perpendicular to the longitudinal direction of the flow channel and a first sensor for sensing the particles in the fluid after heating by the heating arrangement. The thermophoretic force increases the concentration of the particles at the first sensor.
Abstract:
An apparatus for controlling the taste of coffee, a method of controlling the taste of coffee and a coffee maker including the apparatus. The apparatus includes a control unit, configured to determine a target pH value of water corresponding to a desired coffee taste, and a corresponding adjustment control signal; and a pH adjustment unit, configured to adjust, in response to the adjustment control signal applied to the pH adjustment unit, the pH value of water to be fed into a brewing unit of a coffee maker to the target pH value. In accordance with embodiments of the present disclosure, the pH value of water to be fed to a brewing unit of a coffee maker may be adjusted for a desired coffee taste.