Abstract:
Disclosed is a battery module having a plurality of battery cells, the battery module including a cell module stack having a structure in which a plurality of cell modules having the battery cells mounted in cartridges is vertically stacked, a lower end plate supporting a lower end of the cell module stack, and an upper end plate fixing an uppermost cartridge of the cell module stack disposed on the lower end plate, wherein the cartridges and the upper and lower end plates are provided with through holes formed such that the through holes communicate with one another, a fixing member is inserted through the through holes and coupled to the upper and lower end plates, and the fixing member and the through holes are configured to have a horizontal sectional structure to restrain rotation of the fixing member when rotational force for fastening is applied to the fixing member.
Abstract:
Disclosed is a voltage sensing assembly to detect voltages of battery cells having electrode terminals formed at an upper end or a lower end thereof in a state in which the voltage sensing assembly is mounted to a battery module, the voltage sensing assembly including (a) a block case, formed of an electrically insulative material, mounted to a front or rear of the battery module corresponding to electrode terminal connection parts of the battery cells, (b) conductive sensing parts connected to voltage sensing terminals located at one-side ends of bus bars electrically connected to the electrode terminal connection parts of the battery cells, and (c) a connector to transmit voltages sensed by the conductive sensing parts to a controller.
Abstract:
The present application relates to an asymmetry composite material and a method for preparing the same, which provides a composite material comprising a metal porous body (metal foam or the like) and a polymer component, and provides a method for preparing a composite material, wherein the polymer component is formed in an asymmetrical structure on both sides of the metal porous body (metal foam or the like), and a composite material prepared in such a manner.
Abstract:
The present application provides a method for preparing a metal foam. The present application provides a method which can freely control characteristics, such as pore size and porosity, of the metal foam, prepare the metal foam in the form of films or sheets which have conventionally been difficult to produce, particularly the form of thin films or sheets as well, and prepare a metal foam having excellent other physical properties such as mechanical strength. According to one example of the present application, it is also possible to efficiently form a structure in which the metal foams as above are integrated with good adhesive force on a metal base material.
Abstract:
The present application relates to a method for preparing a metal foam. The present application can provide a method capable of preparing a metal foam which is thin and has suitable porosity and pore sizes by a simple and efficient process.
Abstract:
The present application provides a method for manufacturing a metal foam. The present application can provide a method for manufacturing a metal foam, which is capable of forming in a very short time a metal foam comprising uniformly formed pores and having excellent mechanical properties as well as the desired porosity, and a metal foam produced by the above method. In addition, the present application can provide a method capable of forming a metal foam in which the above-mentioned physical properties are ensured, while being in the form of a thin film or sheet, in a short time, and such a metal foam.
Abstract:
The present application relates to a composition for 3D printing, a 3D printing method using the same, and a three-dimensional shape comprising the same, and provides an ink composition capable of realizing precise formation of a three-dimensional shape and uniform curing physical properties of the three-dimensional shape.
Abstract:
The coating composition of the present application has excellent antistatic properties and thus can be used as an antistatic hard coating film. The coating composition of the present application may comprise a salt based on a polyoxometalate anion and a radically polymerizable cation, and a radically polymerizable binder to form an antistatic hard coating film having excellent antistatic property, abrasion resistance and moist-heat resistance. Such a film can be used for an optical laminate and a display device, and the like.
Abstract:
Disclosed herein are a cooling system and a battery pack including the same. The cooling system includes a refrigerant introduction port, through which liquid refrigerant is introduced, a refrigerant discharge port, through which the liquid refrigerant is discharged, a plurality of refrigerant pipes configured to communicate with the refrigerant introduction port or the refrigerant discharge port, one or more pipe connection members configured to interconnect two or more of the refrigerant pipes such that the refrigerant pipes communicate with each other, the pipe connection members being configured to divide the liquid refrigerant or to change the flow direction of the liquid refrigerant between the connected refrigerant pipes, and a plurality of cooling plates, each of which has a hollow flow channel communicating with at least one of the refrigerant pipes and each of which has one surface on which a corresponding one of the battery modules is mounted, the liquid refrigerant being circulated along the hollow flow channel.
Abstract:
Disclosed are an electrolyte for lithium secondary batteries including 10 to 50% by weight of a cyclic carbonate compound, and 50 to 90% by weight of a linear ester compound, based on the total weight of a non-aqueous solvent, wherein a content of ethyl propionate of the linear ester compound is 20 to 60% by weight, based on the total weight of the non-aqueous solvent, and a lithium secondary battery including the electrolyte and exhibiting superior low-temperature characteristics.