Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
Abstract:
A hydrogel network includes a hydrogel polymer having a coupling site, an oligonucleotide conjugated at a terminal end to the hydrogel polymer at the coupling site, and a functional moiety coupled between the terminal end of the oligonucleotide and the coupling site. Such a hydrogel network can be formed by a method including activating a coupling site of a substrate and binding a linker moiety coupled to a terminal end of an oligonucleotide to the activated coupling site, a functional moiety coupled between the terminal end of the oligonucleotide and the linker moiety.
Abstract:
A method of preparing a discrete polymer network array include mixing a plurality of nucleic acid polymer networks with a plurality of color-activated polymer networks to form a dispersion, applying the dispersion to an array of wells, the nucleic acid polymer networks selectively depositing into wells of the array of wells, and rinsing the array of wells to selectively remove the plurality of color-activated polymer networks.
Abstract:
A method of conjugating a substrate includes exchanging a counter ion associated with a biomolecule with a lipophilic counter ion to form a biomolecule complex, dispersing the biomolecule complex in a nonaqueous solvent, and coupling the biomolecule complex to a substrate in the presence of the nonaqueous solvent.
Abstract:
A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
Abstract:
A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.