Abstract:
An apparatus for amplifying a laser beam through injection locking of a laser array by a single master laser is presented. The apparatus is comprised of a master laser which produces a beam that is shaped or focused onto a laser array facet which is further comprised of an array junction plane wherein the laser array is biased above threshold.
Abstract:
A system for short-range laser detection and ranging of targets can provides rapid three-dimensional, e.g., angle, angle, range, scans over a wide field-of-view. Except for the final transmit/receive lens, the disclosed LADAR system can be implemented in an all-fiber configuration. Such system is compact, low cost, robust to misalignment, and lends itself to eye-safe operation by making use of available pulsed 1550 nm fiber lasers and amplifier sources. The disclosed LADAR system incorporates many novel features that provide significant advantages compared to current LADAR systems. The disclosed system uses a monostatic fiber-based transmitter/receiver, a fiber beam scanner based on a laterally vibrating fiber, and a position sensor to monitor the transmitted beam position.
Abstract:
A compact solid state laser that generates multiple wavelengths and multiple beams that are parallel, i.e., bore-sighted relative to each other, is disclosed. Each of the multiple laser beams can be at a different wavelength, pulse energy, pulse length, repetition rate and average power. Each of the laser beams can be turned on or off independently. The laser is comprised of an optically segmented gain section, common laser resonator with common surface segmented cavity mirrors, optically segmented pump laser, and different intra-cavity elements in each laser segment.
Abstract:
A monoblock laser cavity incorporates optical components for a short-pulse laser. These optical components are ‘locked’ into alignment forming an optical laser cavity for flash lamp or diode laser pumping. The optical laser cavity does not need optical alignment after it is fabricated, increasing the brightness of the monoblock laser.
Abstract:
A pulsed fiber laser and associated electronics contained in a miniature package is disclosed. The Pulsed Fiber Laser Source (PFLS) can be a single-stage high gain master oscillator power amplifier (MOPA) type fiber laser source. The PFLS can include a distributed feedback (DFB) laser, a narrowband optical filter, a broad area high-power pump diode, and Erbium/Ytterbium (Er/Yb) double cladding doped fiber. Input electrical pulses drive the DFB laser diode to emit optical pulses that are then amplified by the optical amplifier. Active and passive cooling elements may be incorporated for continuous operation without rest time. Passive cooling for intermittent pulsed applications allows the laser source to be miniaturized by eliminating active cooling elements and associated power supplies and controllers. Low duty cycle relaxes drive requirements and further reduces the size. The PFLS can be used for long distance ranging, communication by retro-modulation, and communication in presence of atmospheric attenuation.
Abstract:
An apparatus and method of hermetically sealing a pump module for a double cladded fiber in a pump module. The apparatus includes a hermetic pump module for coupling light from a pump source into an optical waveguide. The hermetic pump module includes a hermetically sealed housing, wherein the hermetically sealed housing contains an all-glass double cladded fiber with an outer cladding, an inner cladding, and a core, wherein the double cladded fiber includes a v-groove that extends through the outer cladding into the inner cladding, a pump source that emits a light, and a transparent substrate, bonded to the glass outer cladding with a transparent adhesive, wherein the light passes through the transparent substrate and into the all-glass double cladded fiber and the v-groove couples the light into the all-glass double cladded fiber. Alternatively, the substrate may be eliminated and the light directly coupled into the all-glass double cladded fiber.
Abstract:
A narrow band, high power and coherent source of red light in the red (600-650 nm) spectral region is disclosed. The red light source comprises a first optical source for emitting a first light beam at a first wavelength, a second optical source for emitting a second light beam at a second wavelength, a combiner for combining the first and second light beams to produce a combined beam, and a nonlinear crystal responsive to the combined beam for producing a sum frequency light beam of red light.
Abstract:
The invention is for a new type of an efficient and compact laser system, based on semiconductor gain medium, which produces high peak power. The laser system comprises: a compound cavity laser defined by first and second reflective elements; a developing structure, having a first end containing the first reflective element and a second end, being disposed in the compound cavity laser and being responsive to an RF frequency signal within a preselected RF frequency range for developing and reflecting from the first reflective element modelocked laser pulses at a selected wavelength; a first amplifier disposed between the developing structure and the second reflective element and being responsive to the reflected modelocked laser pulses from the developing structure for amplifying the modelocked laser pulses at the selected wavelength, the first amplifier having an end containing the second reflective element for transmitting a first portion of the amplified modelocked laser pulses therethrough and for reflecting a second portion of the amplified modelocked laser pulses back toward the developing structure; and a nonlinear element for converting the first portion of the amplified modelocked laser pulses from said first amplifier to amplified modelocked laser pulses at a desired frequency-converted wavelength.
Abstract:
A bi-directional optical transmission system for radio frequency electricalnergy includes first and second transmitter/receiver stations which transmit and receive light signals along an optical path therebetween. Each station includes a laser transmitter for transmitting a carrier light beam which is intensity modulated by a synchronization of an input radio frequency electrical signal. A photodetector at each station detects the intensity variations of the carrier light beam from the other station and outputs a respective radio frequency electrical signal which is synchronized with the radio frequency electrical input signal of the other station. A beam splitter is provided between the optical path at both the laser transmitter and photodetector to split the light beams incident thereon into a pass portion and angularly reflected portion. An isolator device also is provided between the laser transmitter and beam splitter to isolate the laser transmitter from back reflections. Preferably, the isolator is a Faraday isolator, and additionally or alternatively the laser transmitters transmit at widely separate wavelengths. The optical path can either be free space or a main optical fiber, and the synchronization of the input radio frequency electrical energy can either be phase synchronization or time synchronization.
Abstract:
Diffraction limited, single narrow lobe radiation from a large area laser is achieved in a system using an external ring laser cavity to return radiation to the laser via a spatial filter and a Faraday rotator. An antireflectance coating of sufficiently small reflectivity added to the large area laser converts it into a laser amplifier which provides optical gain in a ring laser cavity.