摘要:
A structure for protecting a semiconductor circuit from electrostatic discharge is provided. The structure comprises a semiconductor substrate of a first conductivity type having two wells of a second conductivity type spaced laterally apart. The wells each comprise a first portion having a first concentration of an impurity of the second conductivity type and a second portion comprising source and drain regions having a second concentration of an impurity of the second conductivity type. The second concentration is greater than the first concentration. The wells are implanted in the substrate of a silicon-on-insulator semiconductor device. Conductive plugs extend through the silicon and insulator layers and make electrical contact with the wells, allowing the dissipation of excess current and heat into the semiconductor substrate.
摘要:
A method for reducing the time for a partially depleted/silicon-on-insulator (PD/SOI) based circuit to reach a dynamic steady state pre-conditions the PD/SOI-based circuit by initially charging the circuit at a voltage greater than the normal operating voltage. The circuit is then charged at the normal operating voltage after a predetermined amount of time. By pre-conditioning the circuit in this manner, the amount of time required for the PD/SOI transistors of the circuit to reach their dynamic steady state (DSS) condition is shortened.
摘要:
The present invention relates to a method of forming a transistor and a transistor structure. The invention comprises forming the transistor using a double silicide process which reduces resistance and reduces the floating-body-effect when employed in conjunction with SOI type device architecture.
摘要:
A SOI field effect transistor structure providing ESD protection. The structure has a source, a drain, a body, and a gate. The gate is formed from a thick oxide layer and a metal contact. The gate is formed during the BEOL process. The transistor may be a p-type transistor or an n-type transistor. The transistor may have its drain tied to either the gate, the body, or both the gate and body. When used as a protection device, the drain is tied to a signal pad and the source is tied to a potential reference.
摘要:
SOI semiconductor components and methods for their fabrication are provided wherein the SOI semiconductor components include an MOS transistor in the supporting semiconductor substrate. In accordance with one embodiment the component comprises a semiconductor on insulator (SOI) substrate having a first semiconductor layer, a layer of insulator on the first semiconductor layer, and a second semiconductor layer overlying the layer of insulator. The component includes source and drain regions of a first conductivity type and first doping concentration in the first semiconductor layer. A channel region of a second conductivity type is defined between the source and drain regions. A gate insulator and gate electrode overlie the channel region. A drift region of the first conductivity type is located between the channel region and the drain region, the drift region having a second doping concentration less than the first doping concentration of the first conductivity determining dopant.
摘要:
A method is provided for fabricating a semiconductor on insulator (SOI) device. The method includes, in one embodiment, providing a monocrystalline silicon substrate having a monocrystalline silicon layer overlying a monocrystalline silicon substrate and separated therefrom by a dielectric layer. A well region is ion implanted in the monocrystalline silicon substrate. A gate electrode material is deposited overlying the monocrystalline silicon layer. The gate electrode material is photolithographically patterned and etched using a minimum lithography feature size to form a first gate electrode, a second gate electrode and a spacer having the minimum lithography feature size. The gate electrode material is then isotropically etched to reduce the width of the first gate electrode, the second gate electrode and the spacer.
摘要:
SOI semiconductor components and methods for their fabrication are provided wherein the SOI semiconductor components include an MOS transistor in the supporting semiconductor substrate. In accordance with one embodiment the component comprises a semiconductor on insulator (SOI) substrate having a first semiconductor layer, a layer of insulator on the first semiconductor layer, and a second semiconductor layer overlying the layer of insulator. The component includes source and drain regions of first conductivity type and first doping concentration in the first semiconductor layer. A channel region of second conductivity type is defined between the source and drain regions. A gate insulator and gate electrode overlie the channel region. A drift region of first conductivity type is located between the channel region and the drain region, the drift region having a second doping concentration less than the first doping concentration of first conductivity determining dopant.
摘要:
The embodiments of the invention provide SRAM cells with asymmetric floating-body pass-gate transistors. More specifically, a semiconductor device includes an SRAM cell, a first pass-gate transistor, and a second pass-gate transistor. The first pass-gate transistor is connected to a first side of the SRAM cell, wherein the first pass-gate transistor comprises a first drain region and a first source region. The second pass-gate transistor is connected to a second side of the SRAM cell, wherein the second side is opposite the first side. The second pass-gate transistor comprises a second source region and a second drain region. Furthermore, the first source region and/or the second source region comprise a xenon implant. The first drain region and the second drain region each lack a xenon implant.
摘要:
According to one exemplary embodiment, a method for forming a field effect transistor on a substrate comprises a step of forming disposable spacers adjacent to a gate stack situated on the substrate, where the disposable spacers comprise amorphous carbon. The disposable spacers can be formed by depositing a layer of amorphous carbon on the gate stack and anisotropically etching the layer of amorphous carbon. The method further comprises forming source and drain regions in the substrate, where the source and drain regions are situated adjacent to the disposable spacers. According to this exemplary embodiment, the method further comprises removing the disposable spacers, where the removal of the disposable spacers causes substantially no gouging in the substrate. The disposable spacers can be removed by using a dry etch process. The method can further comprise forming extension regions in the substrate adjacent to the gate stack prior to forming the disposable spacers.
摘要:
A method is provided for fabricating a semiconductor component that includes a capacitor having a high capacitance per unit area. The component is formed in and on a semiconductor on insulator (SOI) substrate having a first semiconductor layer, a layer of insulator on the first semiconductor layer, and a second semiconductor layer overlying the layer of insulator. The method comprises forming a first capacitor electrode in the first semiconductor layer and depositing a dielectric layer comprising Ba1-xCaxTi1-yZryO3 overlying the first capacitor electrode. A conductive material is deposited and patterned to form a second capacitor electrode overlying the dielectric layer, thus forming a capacitor having a high dielectric constant dielectric. An MOS transistor in then formed in a portion of the second semiconductor layer, the MOS transistor, and especially the gate dielectric of the MOS transistor, formed independently of forming the capacitor and electrically isolated from the capacitor.
摘要翻译:提供了一种用于制造半导体元件的方法,该半导体元件包括具有每单位面积的高电容的电容器。 该部件形成在具有第一半导体层,第一半导体层上的绝缘体层和覆盖在绝缘体层上的第二半导体层的绝缘体上半导体(SOI)衬底中和之上。 该方法包括在第一半导体层中形成第一电容器电极,并沉积包含Ba 1-x Ti x Ti 1-y的介电层, 在第一电容器电极上覆盖的第三电极。 沉积并图案化导电材料,以形成覆盖介电层的第二电容器电极,从而形成具有高介电常数电介质的电容器。 然后形成在第二半导体层的一部分中的MOS晶体管,MOS晶体管,特别是MOS晶体管的栅极电介质,独立于形成电容器并与电容器电隔离形成。