Selection of probability thresholds for generating cardiac arrhythmia notifications

    公开(公告)号:US11583687B2

    公开(公告)日:2023-02-21

    申请号:US16850833

    申请日:2020-04-16

    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of a cardiac arrhythmia. A computing system generates sample probability values by applying a machine learning model to sample patient data. The machine learning model determines a respective probability value that indicates a probability that the cardiac arrhythmia occurred during each respective temporal window. The computing system outputs a user interface comprising graphical data based on the sample probability values and receives, via the user interface, an indication of user input to select a probability threshold for a patient. The computing system receives patient data for the patient and applies the machine learning model to the patient data to determine a current probability value. In response to the determination that the current probability exceeds the probability threshold for the patient, the computing system generates an alert indicating the patient has likely experienced the occurrence of the cardiac arrhythmia.

    SYMPTOM LOGGER
    26.
    发明申请

    公开(公告)号:US20220160310A1

    公开(公告)日:2022-05-26

    申请号:US17103432

    申请日:2020-11-24

    Abstract: This disclosure is directed to techniques for recording and recognizing physiological parameter patterns associated with symptoms. A medical device system includes a medical device including one or more sensors configured to generate a signal that indicates a parameter of a patient. Additionally, the medical device system includes processing circuitry configured to receive data indicative of a user indication of an experienced symptom; determine a plurality of parameter values of the parameter based on a portion of the signal corresponding to a period of time including a time before the user indication and a period of time after the user indication. Additionally, the processing circuitry is configured to identify, based on a reference set of parameter values of the plurality of parameter values, the experienced symptom. Additionally, the processing circuitry is configured to save, to a database in memory, a set of data including the experienced symptom and patient parameters.

    Personalization of artificial intelligence models for analysis of cardiac rhythms

    公开(公告)号:US12161487B2

    公开(公告)日:2024-12-10

    申请号:US18304696

    申请日:2023-04-21

    Abstract: Techniques are disclosed for monitoring a patient for the occurrence of cardiac arrhythmias. A computing system obtains a cardiac electrogram (EGM) strip for a current patient. Additionally, the computing system may apply a first cardiac rhythm classifier (CRC) with a segment of the cardiac EGM strip as input. The first CRC is trained on training cardiac EGM strips from a first population. The first CRC generates first data regarding an aspect of a cardiac rhythm of the current patient. The computing system may also apply a second CRC with the segment of the cardiac EGM strip as input. The second CRC is trained on training cardiac EGM strips from a smaller, second population. The second CRC generates second data regarding the aspect of the cardiac rhythm of the current patient. The computing system may generate output data based on the first and/or second data.

Patent Agency Ranking