Abstract:
A method of forming interconnects in a semiconductor device is provided. A mask including first and second openings is formed over a non-conductive structure. An etch is performed through the mask openings to define (a) a via trench having a via trench width and (b) an interconnect trench having a smaller width than the via trench width. A fill layer is deposited over the structure and (a) fills only a partial width of the via trench to thereby define via trench cavity and (b) fills the full width of the interconnect trench. A further etch is performed through the via trench cavity to form a via opening extending downwardly from the via trench. The remaining fill layer material is removed. The interconnect trench, via trench, and via opening are metallized to form a trench interconnect, a via interconnect, and a via extending downwardly from the via interconnect.
Abstract:
A sidewall-type memory cell (e.g., a CBRAM, ReRAM, or PCM cell) may include a bottom electrode, a top electrode layer defining a sidewall, and an electrolyte layer arranged between the bottom and top electrode layers, such that a conductive path is defined between the bottom electrode and a the top electrode sidewall via the electrolyte layer, wherein the bottom electrode layer extends generally horizontally with respect to a horizontal substrate, and the top electrode sidewall extends non-horizontally with respect to the horizontal substrate, such that when a positive bias-voltage is applied to the cell, a conductive path grows in a non-vertical direction (e.g., a generally horizontal direction or other non-vertical direction) between the bottom electrode and the top electrode sidewall.
Abstract:
An electrically erasable programmable read only memory (EEPROM) cell may include a substrate including at least one active region, a floating gate adjacent the substrate, a write/erase gate defining a write/erase path for performing high voltage write and erase operations, and a read gate defining a read path for performing low voltage read operations, wherein the read path is distinct from the write/erase path. This allows for a smaller read gate oxide, thus allowing the cell size to be reduced. Further, the EEPROM cell may include two independently controllable read gates, thereby defining two independent transistors which allows better programming voltage isolation. This allows the memory array to be drawn using a common source instead of each column of EEPROM cells needing its own source line. This makes the array more scalable because the cell x-dimension would otherwise be limited by each column needing two metal 1 pitches.
Abstract:
A resistive memory cell may include a ring-shaped bottom electrode, a top electrode, and an electrolyte layer arranged between the bottom and top electrodes. A ring-shaped bottom electrode may be formed by forming a dielectric layer over a bottom electrode contact, etching a via in the dielectric layer to expose at least a portion of the bottom electrode contact, depositing a conductive via liner over the dielectric layer and into the via, the via liner deposited in the via forming a ring-shaped structure in the via and a contact portion in contact with the exposed bottom electrode contact, the ring-shaped structure defining a radially inward cavity of the ring-shaped structure, and filling the cavity with a dielectric fill material, such that the ring-shaped structure of the via liner forms the ring-shaped bottom electrode, depositing an electrolyte layer over the bottom electrode, and depositing a top electrode over the electrolyte layer.
Abstract:
An integrated circuit device may include a multi-material toothed bond pad including (a) an array of vertically-extending teeth formed from a first material, e.g., aluminum, and (b) a fill material, e.g., silver, at least partially filling voids between the array of teeth. The teeth may be formed by depositing and etching aluminum or other suitable material, and the fill material may be deposited over the array of teeth and extending down into the voids between the teeth, and etched to expose top surfaces of the teeth. The array of teeth may collectively define an abrasive structure. The multi-material toothed bond pad may be bonded to another bond pad, e.g., using an ultrasonic or thermosonic bonding process, during which the abrasive teeth may abrade, break, or remove unwanted native oxide layers formed on the respective bond pad surfaces, to thereby create a direct and/or eutectic bonding between the bond pads.
Abstract:
Interposers and methods for making interposers having a substrate having a surface defining a plane; a first portion of a metal line directly or indirectly supported by the substrate; a barrier layer on the first portion of the metal line; a second portion of the metal line on the first barrier layer, wherein the second portion is opposite the first portion across the barrier layer. The method includes etching a line pattern in a first portion of a metal layer through a first photoresist layer to form a first portion of a metal line, depositing a barrier layer on the first portion of the metal line, and etching a line pattern in a second portion of the metal layer through a second photoresist layer to form a second portion of a metal line wherein the second portion is opposite the first portion across the barrier layer.
Abstract:
An integrated circuit (IC) package includes a bare die mounted on a substrate, and a conductive routing region formed over the bare die, the conductive routing region including a conductive routing structure and a capacitor formed in multiple conductive routing layers. The bare die includes IC circuitry, a dielectric region at least partially encapsulating the IC circuitry, and an IC contact exposed through the dielectric region. The conductive routing structure formed in the conductive routing region is conductively connected to the IC contact of the bare die. The capacitor formed in the conductive routing region includes a first capacitor electrode and a second capacitor electrode formed in one or more of the conductive routing layers, and a capacitor dielectric element formed between the first capacitor electrode and the second capacitor electrode.
Abstract:
Methods for preparing a donor silicon wafer by applying a SiGe layer on a silicon substrate wafer, depositing a silicon layer on the SiGe layer, etching the silicon layer to form an opening in the silicon layer, wet etching the SiGe layer through the opening in the silicon layer to partially remove SiGe material from the SiGe layer and preserve the silicon layer, depositing a buried oxide layer on the silicon layer, etching the buried oxide layer to form a body bias area, and depositing silicon in the body bias area; bonding a recipient handle wafer to the etched buried oxide layer of the donor silicon wafer to define a BOX; and wet etching the SiGe layer to release the donor silicon wafer from the recipient handle wafer.
Abstract:
Vapor cells may include a body including a cavity within the body. A first substrate bonded to a second substrate at an interface within the body, at least one of the first substrate, the second substrate, or an interfacial material between the first and second substrates may define at least one recess or pore in a surface. A smallest dimension of the at least one recess or pore may be about 500 microns or less, as measured in a direction parallel to at least one surface of the first substrate partially defining the cavity.
Abstract:
An integrated circuit device may include a multi-material toothed bond pad including (a) an array of vertically-extending teeth formed from a first material, e.g., aluminum, and (b) a fill material, e.g., silver, at least partially filling voids between the array of teeth. The teeth may be formed by depositing and etching aluminum or other suitable material, and the fill material may be deposited over the array of teeth and extending down into the voids between the teeth, and etched to expose top surfaces of the teeth. The array of teeth may collectively define an abrasive structure. The multi-material toothed bond pad may be bonded to another bond pad, e.g., using an ultrasonic or thermosonic bonding process, during which the abrasive teeth may abrade, break, or remove unwanted native oxide layers formed on the respective bond pad surfaces, to thereby create a direct and/or eutectic bonding between the bond pads.