摘要:
By adding a novel improvement to the technique disclosed in JP 8-78329 A, a manufacturing method in which film characteristics of a semiconductor film having a crystalline structure are improved is provided. In addition, a TFT having superior TFT characteristics, such as field effect mobility, which uses the semiconductor film as an active layer, and a method of manufacturing the TFT, are also provided. A metallic element which promotes the crystallization of silicon is added to a semiconductor film having an amorphous structure and an oxygen concentration within the film of less than 5×1018/cm3. The semiconductor film having an amorphous structure is then heat-treated, forming a semiconductor film having a crystalline structure. Subsequently, an oxide film on the surface is removed. Oxygen is introduced to the semiconductor film having a crystalline structure, and processing is performed such that the concentration of oxygen within the film is from 5×1018/cm3 to 1×1021/cm3. After removing an oxide film on the surface of the semiconductor film, the semiconductor film surface is leveled by irradiating laser light under an inert gas atmosphere or in a vacuum.
摘要:
A barrier layer that meets three requirements, “withstand well against etching and protect a semiconductor film from an etchant as an etching stopper”, “allow impurities to move in itself during heat treatment for gettering”, and “have excellent reproducibility”, is formed and used to getter impurities contained in a semiconductor film. The barrier layer is a silicon oxide film and the ratio of a sub-oxide contained in the barrier layer is 18% or higher.
摘要:
A spin addition method for catalyst elements is simple and very important technique, because the minimum amount of a catalyst element necessary for crystallization can be easily added by controlling the catalyst element concentration within a catalyst element solution, but there is a problem in that uniformity in the amount of added catalyst element within a substrate is poor. The non-uniformity in the amount of added catalyst element within the substrate is thought to influence fluctuation in crystallinity of a crystalline semiconductor film that has undergone thermal crystallization, and exert a bad influence on the electrical characteristics of TFTs finally structured by the crystalline semiconductor film. The present invention solves this problem with the aforementioned conventional technique. If the spin rotational acceleration speed is set low during a period moving from a dripping of the catalyst element solution process to a high velocity spin drying process in a catalyst element spin addition step, then it becomes clear that the non-uniformity of the amount of added catalyst element within the substrate is improved. The above stated problems are therefore solved by applying a spin addition process with a low spin rotational acceleration to a method of manufacturing a crystalline semiconductor film.
摘要:
A method for fabricating a semiconductor device including an active region obtained by utilizing a silicon semiconductor film having crystallinity which is formed on an insulating substrate is disclosed. A crystalline silicon semiconductor film is obtained by introducing catalyst elements for promoting the crystallization into a lower amorphous silicon semiconductor film and then performing a heat treatment onto the lower amorphous silicon semiconductor film. Thereafter, an upper amorphous silicon semiconductor film is formed on the obtained lower crystalline silicon semiconductor film, which is subsequently subjected to a heat treatment so as to obtain an upper crystalline silicon semiconductor film. Then, the upper crystalline silicon semiconductor film is removed. By this process, the catalyst elements remaining in the lower crystalline silicon semiconductor film moves into the upper crystalline silicon semiconductor film. As a result, a concentration of the catalyst elements in the lower crystalline silicon semiconductor film is reduced.
摘要:
The semiconductor device of the invention includes: a substrate having an insulating surface; an active region formed on the insulating surface of the substrate, the active region being formed by a crystalline silicon film; and an insulating thin film formed on the active region. In the semiconductor device, the active region contains a catalyst element for promoting a crystallization of an amorphous silicon film by a heat treatment.
摘要:
A vehicle suspension device includes a hydraulic damper including a vertical cylinder and a piston rod slidably extending out of the cylinder through the upper end thereof, and an air spring unit including a flexible tubular wall portion member having an inner wall mounted on the cylinder, an outer wall portion mounted on a tubular support member secured to the extending end of the piston rod and a rolling wall portion. A cylindrical housing is rotatably and sealingly mounted on the upper end of the cylinder and extends along the outer circumference of the cylinder, and the free end of the inner wall portion of the flexible tubular wall is secured to the upper end of the housing.
摘要:
A vehicle height adjusting device of includes a hydraulic damper having a tubular main body and a piston rod slidably projecting from one end of the main body, and an air spring unit having a resilient tubular wall member. The wall member has an inner wall portion and an outer wall portion which are closed at one end by a rolling wall portion formed of the inner and outer wall portions on relative reciprocation therebetween. The inner wall portion is sealingly connected to and surrounding the main body of the hydraulic damper, and the outer wall portion is sealingly connected to the piston rod at the projecting end portion thereof. An axial bore is formed in the projecting end portion of the piston rod for supplying pressurized gas into the air spring unit.
摘要:
In at least one operation control TFT (27N, 27P) in a control circuit (27), an impurity of a type that generates an impurity level of a channel region (33c) is included in the channel region (33c) as a threshold adjustment impurity, and the concentration of the threshold adjustment impurity is made higher than the concentration of the threshold adjustment impurity in channel regions (33c) of other TFTs (21, 25, 28) of the same type, thus causing the absolute value of the threshold voltage to be greater than that of the other TFTs (21, 25, 28) of the same type.
摘要:
In at least one operation control TFT (27N, 27P) in a control circuit (27), an impurity of a type that generates an impurity level of a channel region (33c) is included in the channel region (33c) as a threshold adjustment impurity, and the concentration of the threshold adjustment impurity is made higher than the concentration of the threshold adjustment impurity in channel regions (33c) of other TFTs (21, 25, 28) of the same type, thus causing the absolute value of the threshold voltage to be greater than that of the other TFTs (21, 25, 28) of the same type.
摘要:
A semiconductor device includes at least one thin-film transistor 116, which includes: a crystalline semiconductor layer 120 including a region 110 to be a channel region and source and drain regions 113; a gate electrode 107 for controlling the conductivity of the region 110 to be a channel region; a gate insulating film 106 arranged between the semiconductor layer 120 and the gate electrode 107; and source and drain electrodes 115 connected to the source and drain regions 113, respectively. At least one of the source and drain regions 113 contains an element to be a donor or an acceptor and a rare-gas element, but the region 110 to be a channel region does not contain the rare-gas element. The atomic weight of the rare-gas element is greater than that of the element to be a donor or an acceptor. The concentration of the rare-gas element in the at least one region as measured in the thickness direction thereof decreases continuously from the upper surface of the at least one region toward its lower surface.