Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base has a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
A temperature sensing system incorporates a contact temperature sensor probe for measuring the temperature of articles. The probe is able to operate effectively even in high radio frequency environments such as those present within radio frequency excited plasma processing chambers. The temperature sensing system includes a contact temperature sensor, such as a thermocouple, surrounded by a shielding sheath of a material such as aluminum which is clad with one or more layers of a cladding material. A tip insulator is provided surrounding the sheath for providing RF insulation and thermal coupling. An RF insulating and thermal insulating mounting member is connected to the tip insulator for mounting the probe on an article to be measured.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base has a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base has a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over the temperature-controlled base. The flat-support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or disposed on an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently.
Abstract:
An apparatus for controlling the voltage applied to a shield interposed between an induction coil powered by a power supply via a matching network, and the plasma it generates, comprises a shield, a first feedback circuit, and a second feedback circuit. The power supply powers the shield. The first feedback circuit is connected to the induction coil for controlling the power supply. The second feedback circuit is connected to the shield for controlling the voltage of the shield. Both first and second feedback circuits operate at different frequency ranges. The first feedback circuit further comprises a first controller and a first sensor. The first sensor sends a first signal representing the power supplied to the inductive coil to the first controller. The first controller adjusts the power supply such that the power supplied to the inductor coil is controlled by a first set point. The second feedback circuit further comprises a second sensor, a second controller, and a variable impedance network. The shield is powered via a variable impedance network. The second sensor sends a second signal representative of the voltage of the shield to the second controller. The second controller adjusts the variable impedance network such that the voltage of the shield is controlled by a second set point.
Abstract:
A plasma processing device (25) including a vacuum chamber (27) for processing a substrate (29) and a source chamber (26) for generating a plasma is disclosed where the source chamber (26) has a non-cylindrical geometry. Helicon waves of plasma are propagated from the source chamber into the vacuum chamber by a magnetic field having substantially parallel magnetic field lines extending from the source chamber into the vacuum chamber. A RF antenna (31 and 32) of a novel serpentine configuration is used to couple electromagnetic energy into the source chamber to create helicon plasma waves in the source chamber (26). The non-cylindrical geometry of the source chamber allows the processing of large area substrates due to the ability to scale the source chamber to the desired application while maintaining throughput efficiency and the ability to propagate helicon waves along the magnetic field lines present in the source chamber. In one embodiment a linear source chamber having the shape of an elongated rectangular box is disclosed wherein a slot opening (28) connects the source chamber to the vacuum chamber. Due to the ability of the helicon waves from a linear source chamber to propagate in a vacuum chamber without interference from a helicon wave from a similar source chamber, a plasma processing device is disclosed wherein multiple extended non-cylindrical source chambers are arranged to propagate nonparallel helicon plasma waves in a vacuum chamber.
Abstract:
A plasma processor for large workpieces includes a vacuum chamber having plural individually supported dielectric windows for coupling an r.f. field originating outside of the chamber into the chamber to excite the plasma. A planar coil for inductively deriving the field has plural segments with the same electrical length, each including an element connected in parallel with an element of another segment.
Abstract:
A tunable multi-zone injection system for a plasma processing system for plasma processing of substrates such as semiconductor wafers. The system includes a plasma processing chamber, a substrate support for supporting a substrate within the processing chamber, a dielectric member having an interior surface facing the substrate support, the dielectric member forming a wall of the processing chamber, a gas injector fixed to part of or removably mounted in an opening in the dielectric window, the gas injector including a plurality of gas outlets supplying process gas at adjustable flow rates to multiple zones of the chamber, and an RF energy source such as a planar or non-planar spiral coil which inductively couples RF energy through the dielectric member and into the chamber to energize the process gas into a plasma state. The injector can include an on-axis outlet supplying process gas at a first flow rate to a central zone and off-axis outlets supplying the same process gas at a second flow rate to an annular zone surrounding the central zone. The arrangement permits modification of gas delivery to meet the needs of a particular processing regime by allowing independent adjustment of the gas flow to multiple zones in the chamber. In addition, compared to consumable showerhead arrangements, a removably mounted gas injector can be replaced more easily and economically.
Abstract:
A chuck for a plasma processor comprises a temperature-controlled base, a thermal insulator, a flat support, and a heater. The temperature-controlled base is controlled in operation a temperature below the desired temperature of a workpiece. The thermal insulator is disposed over at least a portion of the temperature-controlled base. The flat support holds a workpiece and is disposed over the thermal insulator. A heater is embedded within the flat support and/or mounted to an underside of the flat support. The heater includes a plurality of heating elements that heat a plurality of corresponding heating zones. The power supplied and/or temperature of each heating element is controlled independently. The heater and flat support have a combined temperature rate change of at least 1° C. per second.
Abstract:
A distributed power arrangement to provide local power delivery in a plasma processing system during substrate processing is provided. The distributed power arrangement includes a set of direct current (DC) power supply units. The distributed power arrangement also includes a plurality of power generators, which is configured to receive power from the set of DC power supply units. Each power generator of the plurality of power generators is coupled to a set of electrical elements, thereby enabling the each power generator of the plurality of power generators to control the local power delivery.