摘要:
The present invention provides photonic devices utilized in optical telecommunications. The photonic devices include photosensitive bulk glass bodies which contain Bragg gratings, particularly with the ultraviolet photosensitive bulk glass bodies directing optical telecommunications wavelength range bands. Preferably the ultraviolet photosensitive bulk glass bodies are batch meltable alkali boro-alumino-silicate bulk glass bodies. One embodiment of the invention relates to an optical element including a transparent photosensitive bulk glass having formed therein a non-waveguiding Bragg grating; and a optical element optical surface for manipulating light. Desirably, the photosensitive bulk glass has a 250 nm absorption less than 10 dB/cm.
摘要:
A reflective polarzier for visible light wavelengths formed of a plurality of polarizer units. Each polarizer unit having a transparent, inorganic substrate with first and second opposing surfaces. The first surface is coated with a single layer of a dielectric material, and the second surface is coated with a layer of a highly reflective metal film or a dielectric material. The polarizer is configured to produce a “quasi-straight path,” such that a light ray exiting the substrate is substantially parallel with a corresponding, incident light ray entering the substrate. The polarizer exhibits polarization over the entire visible spectrum.
摘要:
A method of writing a pattern, such as a waveguide, in a bulk glass substrate. The bulk glass substrate can be formed from, for example, borosilicate or sulfide or lead glass. A pulsed laser beam is focused within the substrate while the focus is translated relative to the substrate along a scan path at a scan speed effective to induce an increase in the refractive index of the material along the scan path. Substantially no laser induced physical damage of the material is incurred along the scan path. Various optical devices can be made using this method.
摘要:
Polarized glass articles and method of manufacturing polarizing glass articles are disclosed. Optical isolators using the polarizing glass articles have reduced coupling and surface losses when compared with conventional optical isolators.
摘要:
Devices are made comprising a tin-phosphorous oxyfluoride glass, which has been exposed to light, preferably shorter in wavelength than the absorption edge of the glass, to change the refractive index change of the glass. The glasses can be used to form planar and fiber devices, including core/clad structures for guiding light.
摘要:
A polarizing glass article, and a method of making the article, that exhibits a broad band of high contrast polarizing properties in the infrared region of the radiation spectrum, that is phase-separated by precipitating silver, copper, or copper-cadmium halide crystals in the glass within a size range of 200-5000 Å, and that contains elongated silver, copper, or copper-cadmium metal particles formed on or in the halide crystals, and having an elongated aspect ratio of at least 2:1, the article having a contrast ratio of at least 100,000 over a range of at least 300 nm.
摘要:
Method of patterning or forming color gradients and/or designs on a glass surface are disclosed. Patterns are formed by depositing a film of metal on at least one surface of the glass; forming a layer of photoresist over the metal; exposing the article to light through a mask which contains a desired pattern; developing the piece to remove the exposed photoresist to reveal the underlying metal; removing the underlying metal to reveal the underlying glass; and removing the unexposed photoresist to reveal the underlying metal. To form color gradients or color patterns, the glass article is further treated in hydrogen at a temperature in the range of 300-600.degree. C. to effect the desired surface coloration.
摘要:
A structure for use in forming an optical component and a method of making such a component is described. The structure comprises a non-waveguiding body of optical material having a concentration of a photorefractive-sensitive component in the body such that upon irradiation of a part of the body by a beam of actinic radiation, the refractive index of the irradiated part is increased. The method of making the optical component comprises providing a non-waveguiding body of optical material; providing a concentration of a photorefractive-sensitive component in the body; contacting the non-waveguiding body of optical material with an atmosphere comprising one of hydrogen, deuterium and mixtures thereof; and exposing a part of the non-waveguiding body of optical material to actinic radiation such that the refractive index of the exposed part is increased. Such a structure and method can be used to form symmetrical planar waveguides, optical fiber waveguides and other optical components such as gratings.
摘要:
An ophthalmic lens of photochromic glass having an R.sub.2 O-Al.sub.2 O.sub.3 -B.sub.2 O.sub.3 -SiO.sub.2 base glass composition and a method of producing the lens. The lens contains precipitated cuprous halide crystals that are elongated and oriented, whereby the lens is capable of polarizing light when the lens is in the darkened state. If at least a portion of the crystals in at least a surface layer on the lens are reduced to copper metal, the lens exhibits a permanent dichroic behavior. The lens provides effective polarization of radiation across the entire visible wavelength region of the spectrum, has a sharp spectral cutoff for radiation below the 400 nm wavelength, thereby eliminating UV transmission, and has a transmittance not over about 40% in the darkened state.
摘要:
The present invention is directed to the preparation of two groups of transparent glass-ceramics exhibiting high optical clarity and containing essentially only one crystal phase. The first group consists essentially, in cation percent, of______________________________________ SiO.sub.2 20-35 PbF.sub.2 19-23 AlO.sub.1.5 10-20 YF.sub.3 3-7, CdF.sub.2 19-34 ______________________________________ and the second group consists essentially, in cation percent, of______________________________________ SiO.sub.2 20-35 PbF.sub.2 15-25 AlO.sub.1.5 10-20 YF.sub.3 3-7 CdF.sub.2 21-31 ZnF.sub.2 3-7. ______________________________________ These glass-ceramics may be used to fabricate optical waveguide fibers. Also when doped with certain rare earth elements, notably Pr, Er, and Dy, the glass-ceramic materials may be used to fabricate optical amplifiers and lasers.