Abstract:
Provided are a base station, a terminal, a band allocation method, and a downlink data communication method with which bands can be efficiently allocated. In a base station in which a plurality of unit bands can be allocated to a single communication, when a data receiver acquires terminal capability information transmitted by a terminal in the initial access unit band and the bandwidth available for communication indicated by the terminal capability information can accommodate a plurality of unit bands, a unit band group which includes the initial access unit band as well as the unit bands adjacent thereto is allocated to the terminal, and a communication band movement indication, which indicates the movement of the center frequency in the communication band of the terminal toward the center frequency in the unit band group, is transmitted to the terminal using the initial access unit band.
Abstract:
Disclosed are an encoding ratio setting method and a radio communication device which can avoid encoding of control information at an encoding ratio lower than necessary and suppress lowering of the transmission efficiency of the control information. In the device, an encoding ratio setting unit (122) sets the encoding ratio R′control of the control information which is time-multiplexed with user data, according to the encoding ratio Rdata of the user data, ΔPUSCHoffset as the PUSCH offset of each control information, and ΔRANKoffset as the rank offset based on the rank value of the data channel using Expression (1). R control ′ = O Q ′ = max ( O ⌈ O 10 - Δ offset PUSCH + Δ offset Rank 10 · R data ⌉ , O 4 · M sc ) ( 1 ) Where ┌x┐ is an integer not greater than x, and max(x,y) is the greater one among X and Y.
Abstract:
Provided is a radio communication base station device which can prevent lowering of use efficiency of a channel communication resource for performing a frequency diversity transmission when simultaneously performing a frequency scheduling transmission and the frequency diversity transmission in a multicarrier communication. In the device, a modulation unit (12) executes a modulation process on Dch data after encoded so as to generate a Dch data symbol. A modulation unit (22) executes a modulation process on the encoded Lch data so as to generate an Lch data symbol. An allocation unit (103) allocates the Dch data symbol and the Lch data symbol to respective subcarriers constituting an OFDM symbol and outputs them to a multiplexing unit (104). Here, when a plurality of Dch are used for a Dch data symbol of one mobile station, the allocation unit (103) uses Dch of continuous channel numbers.
Abstract:
A scheduling apparatus and a scheduling method, wherein the amount of signaling for frequency resource allocation information can be reduced while maintaining system throughput performance. In a base station apparatus (100), a scheduling section (113) allocates frequency resources to frequency allocation target terminals based on set frequency allocation units, and a frequency allocation parameter setting section (112) adjusts the set frequency allocation units set in the scheduling section (113) based on cluster numbers. Due to this, in each cluster number, frequency resources can be allocated based on the most suitable frequency allocation units with respect to the signaling bit number. As a result, the amount of signaling for frequency resource allocation information can be reduced. Further, system throughput can be maintained by making the cluster number, which is a parameter having little effect on system throughput, a setting parameter for frequency allocation units.
Abstract:
A wireless communication base station apparatus that allows the number of times of blind decodings at a mobile station to be reduced without increasing the overhead caused by notifying information. In this apparatus, a CCE allocation part allocates allocation information allocated to a PDCCH received from modulation parts to a particular one of a plurality of search spaces that is corresponding to a CCE aggregation size of the PDCCH. A placement part then places the allocation information in one of downstream line resources, reserved for the PDCCH, that is corresponding to the CCE of the particular search space to which the allocation information has been allocated. A radio transmission part then transmits an OFDM symbol, in which the allocation information has been placed, to the mobile station from an antenna.
Abstract:
Provided is a terminal that is capable of avoiding a PHICH resource conflict where terminals having different UL-DL configurations coexist. When a response signal transmitted in a first sub-frame is in response to uplink data transmitted in a second sub-frame of a first configuration pattern, and a response signal transmitted in the first sub-frame is in response to uplink data transmitted in a third sub-frame of a second configuration pattern that is set on another terminal for which the configuration pattern setting cannot be changed, a first resource to be allocated to the response signal in the first sub-frame that is transmitted in response to the uplink data transmitted in the second sub-frame from the terminal; is different from a second resource to be allocated to the response signal in the third sub-frame that is transmitted in response to the uplink data transmitted from the another terminal.
Abstract:
The wireless communication comprises: transmitting downlink control information (DCI) from a transmission point to an UE for the enabled TB and the disabled TB, wherein the DCI comprises a 8-value indicator to indicate CoMP states for the enabled TB in conjunction with the new data indicator (NDI) of the disabled TB; if the NDI of the enabled TB is untoggled or the value of the 8-value indicator for the enabled TB is equal to 0, 1, 2, or 3, the UE using the NDI of the disabled TB to select a CoMP state from a first CoMP state and a second CoMP state; and if the NDI of the enabled TB is toggled and the value of the 8-value indicator is 4, 5, 6, or 7, the UE obtaining the information of whether the enabled TB is initial transmission or retransmission based on the NDI of the disabled TB.
Abstract:
Provided are a wireless communication apparatus and a reference signal generating method, wherein inter-cell interference is reduced inside and outside a CoMP set. A CoMP mode setting unit (101) sets whether the terminal (100) thereof is a CoMP terminal or a Non-CoMP terminal. When the terminal (100) is set as a Non-CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, from among all the ZC sequence numbers that can be used within the system. When the terminal (100) is set as a CoMP terminal, the hopping pattern calculating unit (104) calculates a ZC sequence number to be used as the transmission timing, by hopping the ZC sequence numbers to be used within the CoMP set. A ZC sequence generating unit (105) generates a ZC sequence to be used as an SRS, using the calculated ZC sequence number.
Abstract:
The purpose of the present invention is to be able to simultaneously generate three or more sets of CSI within a predetermined time interval, without degrading the accuracy of the CSI, to achieve CoMP control for flexible switching of base stations. At predetermined intervals or at timing coincident with reception of trigger information, a generation unit uses a CSI-RS resource to measure a desired signal component and interference component, and generate CSI. A transmission unit transmits control information including the CSI. During a given interval (for example, during four subframes) following reception of trigger information, the generation unit does not measure the interference component, instead using the most recent previously measured interference component, to measure the channel quality.
Abstract:
Provided are a communication device and an SRS transmission method capable of reducing the possibility of a difference in recognition between the presence or absence of an SRS transmission between a base station and a terminal or of an SRS resource so as to prevent degradation of system throughput. At a terminal (200), a reception processing unit (203) detects control information indicating whether or not to request transmission of a sounding reference signal (SRS), whereupon a transmission signal forming unit (207) transmits an A-SRS by way of control by a transmission control unit (206) on the basis of control information. The transmission control unit (206) determines whether or not to execute SRS transmission on the basis of an “SRS Transmission Execution Rule” and the reception status of trigger information.