摘要:
A magnetic resonance (MR) active invasive device system employs a radio-frequency (RF) coil embedded in an invasive device for the purpose of generating MR angiograms of a selected blood vessels. A subject is first placed in a polarizing magnetic field. The invasive device is then placed into a selected blood vessel of the subject such that the RF coil of the invasive device is located at or near the root of a vessel tree desired to be imaged. The RF coil is then used to alter the nuclear spin magnetization of blood flowing within the vessel. This is done by employing an RF excitation signal to the coil at the Larmor frequency of the blood. The nutation of spin magnetization can change the amount of longitudinal spin magnetization or the Amount of magnetization in the transverse plane. Because the size of the radio-frequency coil in the invasive device is small, the change in spin magnetization is limited to blood flowing by the invasive device. An MR imaging pulse sequence is then applied to the subject to obtain image information from the region containing the desired vessel tree. The MR imaging pulse sequence is designed to selectively detect the blood whose spin magnetization has been changed by the MR-active invasive device. Since only blood which the magnetization has modified is detected with the imaging sequence, the vessel tree is imaged.
摘要:
A RF volume coil with optimized signal-to-noise ratio, for NMR use, has a reduced length L.sub.c, which is between about 0.3r.sub.s and about 1.5r.sub.s, where r.sub.s is the radius of a sample-to-be-investigated, contained within the cylindrical volume coil, with the volume coil radius r.sub.c being between about 1.0r.sub.s and about 1.6r.sub.s. the "short" volume coil has an improved SNR for a voxel located substantially on the central plane of the coil, relative to the SNR of a "normal"-lenth volume coil with L.sub.c .gtoreq.4r.sub.s.
摘要:
A method for eliminating the effects of a spurious free induction decay (FID) NMR signal due to imperfect 180.degree. RF pulses comprises applying a large magnitude, short duration magnetic field gradient pulse, termed the "crusher" pulse immediately following the 180.degree. pulse. When the method is employed with NMR pulse sequences in which the 180.degree. pulse is part of a spin echo type refocusing RF pulse sequence, the 180.degree. pulse is preceded by a magnetic field gradient pulse termed the "primer", having an equal integral with respect to time as the crusher pulse. The method is effective in removing NMR image artifacts produced by spurious FID in both planar and three-dimensional NMR imaging methods.
摘要:
Selective excitation is used to define a thick planar slab of excited nuclear spins in a nuclear magnetic resonance (NMR) imaging sample. The thick slab is selected such that the excited spins are contained well within the optimum sensitive region defined by the radio frequency (RF) transmitter and receiver coils. Three-dimensional spatial information of an NMR imaging parameter, such as nuclear spin density or nuclear spin relaxation time, is collected simultaneously from the excited slab and can be used to construct a series of several tomographic section images of the slab. The spatial information is encoded in the NMR signal by application of pulsed gradient magnetic fields subsequent to excitation. Image picture information is obtained from the NMR signals via three-dimensional Fourier transformation.
摘要:
RF/MRI compatible leads include at least one conductor that turns back on itself at least twice in a lengthwise direction, and can turn back on itself at least twice at multiple locations along its length. The at least one electrical lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2W/kg. Related devices and methods of fabricating leads are also described.
摘要:
Featured are a device with localized sensitivity to magnetic resonance signals, an imaging system using such a device and MRI methods for performing internal MRI or MRI Endoscopy. Such an MRI method includes introducing an MRI antenna or probe into the specimen to be imaged, the antenna being configured in accordance with the devices described herein, so that the spatial coordinate frame of imaging is inherently locked or defined with respect to the introduced antenna thereby providing imaging of the specimen from the point of view of the antenna. Further such imaging is conducted so that the MRI signal is confined substantially to a volume with respect to a particular region of the antenna or probe.
摘要:
MRI/RF compatible leads include at least one conductor, a respective conductor having at least one segment with a multi-layer stacked coil configuration. The lead can be configured so that the lead heats local tissue less than about 10 degrees Celsius (typically about 5 degrees Celsius or less) or does not heat local tissue when a patient is exposed to target RF frequencies at a peak input SAR of at least about 4 W/kg and/or a whole body average SAR of at least about 2 W/kg. Related leads and methods of fabricating leads are also described.
摘要:
The systems and methods of the present invention provide for MRI probes adapted for insertion into a plurality of body orifices, in order to evaluate the anatomy of proximate anatomic structures, to diagnose abnormalities thereof and to treat the diagnosed abnormalities. MRI probes are described that are suitable for use in the mediastinum, in the pancreaticohepaticobiliary system, in the tracheobronchopulmonary system, in the head and neck, in the genitourinary system, the gastrointestinal system, the vascular system, and in the evaluation, diagnosis and treatment of internal fluid collections.
摘要:
The present invention provides several embodiments of methods of making magnetic resonance catheter coils which include employing a flexible electrically insulative base member, depositing an electrically conductive material on the base member in a predetermined pattern to create at least one pair of generally parallel electrically conductive coil elements which are electrically connected to each other. A catheter is provided over the coil assembly. In one embodiment, a second pair of generally parallel electrically conductive coil elements are provided in order to create a quadrature coil. In this latter embodiment, the electrically insulative base member may have the first pair of coil elements created on one surface thereof and a second pair on the other with the base member subsequently being deformed to create a tubular coil having one pair of coil elements on the outside and the other pair on the inside. In some embodiments, tuning and matching circuits and decoupling circuits may be provided. The (a) coils, (b) coil assemblies, as well as (c) catheter coils containing coil assemblies produced by these methods are also disclosed. The coils may be miniaturized so as to facilitate ready insertion within a suitable sheath, such as a probe or catheter, into a patient, including into body openings, or into blood vessels or into interior regions of the body.
摘要:
The invention provides a method for magnetic resonance imaging and spectroscopic analysis of the interior of a specimen which includes positioning the specimen within a main magnetic field, introducing an invasive probe having an elongated receiver coil into or adjacent to the specimen with the coil having at least one pair of elongated electrical conductors, preferably, generally parallel to each other disposed within a dielectric material and having a pair of ends electrically connected to each other. RF pulses are provided to the region of interest to excite magnetic resonance signals, gradient magnetic pulses are applied to the region of interest with the receiver coil receiving magnetic resonance signals and emitting responsive output signals which may be processed by a computer to provide image information for display in a desired manner. The method in a preferred form involves employing a flexible receiver coil which has uniform sensitivity along the coil and may be operated even when the magnetic resonance signal is in an oblique position. Tuning capacitance may be distributed along the length of the coil and/or a Faraday screen provided to minimize dielectric losses between the coil and the surrounding material of the specimen. The method may be used on a wide variety of specimens and in a preferred use is introduced into small blood vessels of a patient to facilitate determination of atherosclerotic plaque. Medical intervention procedures, such as plaque removal, may be employed generally simultaneously with the imaging of the present invention. Corresponding apparatus is provided.