摘要:
Process for converting a hydrocarbon fraction that is obtained from atmospheric distillation of a crude, comprising a vacuum distillation stage (a) of said feedstock that makes it possible to obtain a vacuum distillate and a vacuum residue; a stage b) for treating at least a portion of the vacuum distillate in the presence of hydrogen in at least one reactor that contains at least one fixed-bed hydrotreatment catalyst under conditions that make it possible to obtain a liquid effluent with a low sulfur content; a stage c) for treating at least a portion of the vacuum residue in the presence of hydrogen in at least one triphase reactor that contains at least one ebullated-bed hydrotreatment catalyst; a stage d) in which at least a portion of the product that is obtained in stage b) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; a stage e) in which at least a portion of the product that is obtained in stage c) is sent to an atmospheric distillation zone from which a light fraction and a heavier liquid fraction are recovered; and optionally a catalytic cracking stage f) in which at least a portion of the heavier liquid fractions that are obtained in stages d) and e) are at least partially cracked into lighter fuel-type fractions.
摘要:
The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising NU-85 zeolite and at least one hydro-dehydrogenating element, at a temperature which is in the range 170.degree. C. to 500.degree. C., a pressure in the range 1 to 250 bar and an hourly space velocity in the range 0.05 to 100 h.sup.-1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The invention also concerns a NU-85 zeolite from which a portion of elements T (Al, Ga, Fe or B) have been removed and which has an Si/T atomic ratio of at least 18.
摘要:
The invention concerns a process for improving the pour point of a feed comprising paraffins containing more than 10 carbon atoms, in which process the feed to be treated is brought into contact with a catalyst comprising an NU-87 zeolite comprising silicon and at least one clement T selected from the group formed by Al, Fe, Ga and B, from which at least a portion of clement T has been removed, and having a global Si/T ratio of over 20, the catalyst also containing at least one hydro-dehydrogenating element. The process is carried out at a temperature which is in the range 170.degree. C. to 500.degree. C., a pressure in the range 1 to 250 bar and at an hourly space velocity in the range 0.05 to 100 h.sup.-1, in the presence of hydrogen in a proportion of 50 to 2000 l/l of feed. The oils obtained have good pour points and high viscosity indices (VI). The process is also applicable to gas oils and other feeds requiring a reduction of pour point. The catalyst is also claimed.
摘要:
An asphaltene-containing heavy oil or heavy oil fraction is converted to lighter fractions in a process comprising three steps: a hydrovisbreaking, a catalytic hydrodemetallation and catalytic hydrodesulfuration.
摘要:
A process for the hydrotreatment of a heavy hydrocarbon fraction containing sulfur and metal impurities comprises at least two steps: a first step using a catalyst comprising a low proportion of at least one metal of groups V, VI and VIII, said catalyst being in the form of a plurality of juxtaposed agglomerates each formed of a plurality of acicular plates, the plates of each agglomerate being generally oriented radially with respect to one another and with respect to the center of the agglomerate, the carrier of this catalyst being preferably inert; and a second step using a catalyst which could be of the same type but with a higher proportion of metals. This process is useful for the conversion of crude oils, straight run hydrocarbon residues, deasphalted oils, asphalts dissolved in aromatic distillates and coal hydrogenates.
摘要:
An improved hydrocracking process of hydrocarbon charges, in two stages with an intermediate separation, in which the second-stage of hydrocracking is carried out in the presence of an added nitrogen content which is greater than 150 ppm by weight, preferably about 500 ppm by weight, and preferably in the presence of a Y zeolite catalyst, produces high yields of middle distillate.
摘要:
A process for transforming a gas oil cut from a conversion process or from an aromatic crude is described, the aim of the process being to improve the cetane number of said cut. The process comprises at least one hydrogenation step in which said gas oil cut is passed, in the presence of hydrogen, over a catalyst comprising an amorphous mineral support, at least one compound of a group VIB metal, at least one compound of a non noble group VIII metal and at least phosphorous or a compound of phosphorous, the process then comprising a hydrocracking step in which the hydrogenated feed is passed, in the presence of hydrogen, over a catalyst comprising an acidic support, at least one compound of a group VIB metal and at least one compound of a non noble group VIII metal.
摘要:
A process for producing oils with high viscosity indices from oil distillates or effluents from a conversion unit comprises the following steps: a) catalytic hydrotreatment of the feed in the presence of hydrogen and a non zeolitic catalyst; b) fractionation of at least a portion of the effluent from step a) or step d) described below to an oil residue; c) fractionation by thermal diffusion of at least a portion of the oil residue obtained from step b) into oil fractions with different compositions and viscosity indices. Step b) can be preceded by a step d) for hydrocracking the effluent obtained from step a) in the presence of hydrogen and a zeolitic catalyst.
摘要:
A process for converting a heavy hydrocarbon fraction comprises treating the hydrocarbon feed in a hydroconversion section in the presence of hydrogen, the section comprising at least one three-phase reactor containing at least one ebullated bed hydroconversion catalyst, operating in liquid and gas riser mode, said reactor comprising at least one means for removing catalyst from said reactor and at least one means for adding fresh catalyst to said reactor. At least a portion of the hydroconverted liquid effluent is sent to an atmospheric distillation zone from which a distillate and an atmospheric residue are recovered; at least a portion of the atmospheric residue is sent to a vacuum distillation zone from which a vacuum distillate and a vacuum residue are recovered; at least a portion of the vacuum residue is sent to a deasphalting section from which a deasphalted hydrocarbon cut and residual asphalt are recovered; and at least a portion of the deasphalted hydrocarbon cut is sent to a hydrotreatment section from which a gas fraction, an atmospheric distillate and a heavier liquid fraction of the hydrotreated feed are recovered by atmospheric distillation separation, said section comprising at least one three-phase reactor containing at least one ebullated bed hvdroconversion catalyst operating in liquid and gas riser mode, the reactor comprising at least one means for extracting catalyst from the reactor and at least one means for adding fresh catalyst to the reactor.
摘要:
A process for converting a heavy hydrocarbon fraction comprises treating the hydrocarbon feed in a hydrodemetallization section, the section comprising at least one fixed bed hydrodemetallization catalyst. At least a portion of the hydrotreated liquid effluent from step a) is sent to an atmospheric distillation zone from which a distillate and an atmospheric residue are recovered; at least a portion of the atmospheric residue is sent to a vacuum distillation zone from which a vacuum distillate and a vacuum residue are recovered; at least a portion of the vacuum residue is sent to a deasphalting section from which a deasphalted hydrocarbon cut and residual asphalt are recovered; and at least a portion of the deasphalted hydrocarbon cut is sent to a hydrotreatment section from which a gas fraction, a fuel fraction and a heavier liquid fraction of the hydrotreated feed are recovered, said section comprising at least one three-phase reactor containing at least one ebullated bed hydrotreatment catalyst operating in liquid and gas riser mode, the reactor comprising at least one means for removing catalyst from the reactor and at least one means for adding fresh catalyst to the reactor.