Abstract:
A method of applying a data format in a direct memory access transfer is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a single chassis that couples the storage nodes as a cluster, each of the plurality of storage nodes having nonvolatile solid-state memory for user data storage. The method includes reading a self-describing data portion from a first memory of the nonvolatile solid-state memory and extracting a destination from the self-describing data portion. The method includes writing data, from the self-describing data portion, to a second memory of the nonvolatile solid-state memory according to the destination.
Abstract:
A storage system is provided. The storage system includes a plurality of storage nodes, each of the plurality of storage nodes having a plurality of storage units with storage memory. The system includes a first network coupling the plurality of storage nodes and a second network coupled to at least a subset of the plurality of storage units of each of the plurality of storage nodes such that one of the plurality of storage units of a first one of the plurality of storage nodes can initiate or relay a command to one of the plurality of storage units of a second one of the plurality of storage nodes via the second network without the command passing through the first network.
Abstract:
In some embodiments, a method for die-level monitoring is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a chassis that couples the storage nodes. Each of the storage nodes has a non-volatile solid-state storage with non-volatile memory and the user data is accessible via the erasure coding from a remainder of the storage nodes in event of two of the storage nodes being unreachable. The method includes producing diagnostic information that diagnoses the non-volatile memory on a basis of per package, per die, per plane, per block, or per page, the producing performed by each of the plurality of storage nodes. The method includes writing the diagnostic information to a memory in the storage cluster.
Abstract:
A storage cluster is provided. The storage cluster includes a plurality of storage nodes, each of the plurality of storage nodes having nonvolatile solid-state memory and a plurality of operations queues coupled to the solid-state memory. The plurality of storage nodes is configured to distribute the user data and metadata throughout the plurality of storage nodes such that the plurality of storage nodes can access the user data with a failure of two of the plurality of storage nodes. Each of the plurality of storage nodes is configured to determine whether a read of 1 or more bits in the solid-state memory via a first path is within a latency budget. The plurality of storage nodes is configured to perform a read of user data or metadata via a second path, responsive to a determination that the read of the bit via the first path is not within the latency budget.
Abstract:
A plurality of storage nodes within a single chassis is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. The plurality of storage nodes has a non-volatile solid-state storage for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes, with erasure coding of the user data. The plurality of storage nodes is configured to recover from failure of two of the plurality of storage nodes by applying the erasure coding to the user data from a remainder of the plurality of storage nodes. The plurality of storage nodes is configured to detect an error and engage in an error recovery via one of a processor of one of the plurality of storage nodes, a processor of the non-volatile solid state storage, or the flash memory.
Abstract:
A plurality of storage nodes within a single chassis is provided. The plurality of storage nodes is configured to communicate together as a storage cluster. The plurality of storage nodes has a non-volatile solid-state storage for user data storage. The plurality of storage nodes is configured to distribute the user data and metadata associated with the user data throughout the plurality of storage nodes, with erasure coding of the user data. The plurality of storage nodes is configured to recover from failure of two of the plurality of storage nodes by applying the erasure coding to the user data from a remainder of the plurality of storage nodes. The plurality of storage nodes is configured to detect an error and engage in an error recovery via one of a processor of one of the plurality of storage nodes, a processor of the non-volatile solid state storage, or the flash memory.
Abstract:
A method of applying scheduling policies is provided. The method includes distributing user data throughout a plurality of storage nodes through erasure coding, wherein the plurality of storage nodes are housed within a single chassis coupling the storage nodes as a cluster. The method includes receiving operations relating to a non-volatile memory of one of the plurality of storage nodes into a plurality of operation queues. The method includes evaluating each of the operations in the plurality of operation queues as to benefit to the non-volatile solid-state storage according to a plurality of policies. For each channel of a plurality of channels coupling the operation queues to the non-volatile memory, the method includes iterating a selection and an execution of a next operation from the plurality of operation queues, with each next operation having a greater benefit than at least a subset of operations remaining in the operation queues.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A method of applying an address space to data storage in a non-volatile solid-state storage is provided. The method includes receiving a plurality of portions of user data for storage in the non-volatile solid-state storage and assigning to each successive one of the plurality of portions of user data one of a plurality of sequential, nonrepeating addresses of an address space. The address range of the address space exceeds a maximum number of addresses expected to be applied during a lifespan of the non-volatile solid-state storage. The method includes writing each of the plurality of portions of user data to the non-volatile solid-state storage such that each of the plurality of portions of user data is identified and locatable for reading via the one of the plurality of sequential, nonrepeating addresses of the address space.
Abstract:
A storage system is provided. The storage system includes a plurality of storage nodes, each of the plurality of storage nodes having a plurality of storage units with storage memory. The system includes a first network coupling the plurality of storage nodes and a second network coupled to at least a subset of the plurality of storage units of each of the plurality of storage nodes such that one of the plurality of storage units of a first one of the plurality of storage nodes can initiate or relay a command to one of the plurality of storage units of a second one of the plurality of storage nodes via the second network without the command passing through the first network.