Abstract:
Methods, systems, and devices for wireless communication are described. Resources for narrowband communication in an unlicensed radio frequency spectrum band may be configured and allocated based on resource availability, regulatory constraints, and device capability or category. A narrowband wireless device, such as a machine type communication device or other relatively low complexity device, may communicate using one or more narrowband carriers, which may occupy between one tone and multiple resource blocks in an unlicensed spectrum band (e.g., any number of resources between one (1) tone and multiple resource blocks (RBs)). Different device types may thus be configured differently as they move between geographic regions. The base station may then communicate with the narrowband mobile device based on the resource allocation and the carrier configuration.
Abstract:
Methods, systems, and devices for wireless communication are described. Wireless communications systems operating in unlicensed or shared radio frequency spectrum band may use different modes to manage hybrid automatic repeat request (HARQ) feedback. HARQ feedback may be transmitted autonomously or, in some cases, HARQ feedback may be solicited from a user equipment (UE) for one or several HARQ processes. Solicited feedback may be referred to as polled feedback and autonomous feedback may be referred to as unpolled feedback. Polled and unpolled feedback may be transmitted using different physical channels, and may be grant-based or triggered without an express grant. Buffers for polled and unpolled feedback may be separately maintained and managed. In a multicarrier configuration, uplink control information (UCI) for one or more carriers may be transmitted on a subset of configured uplink carriers. A number of carriers used for UCI may depend on operating conditions of a UE.
Abstract:
Techniques for switching a user equipment (UE) between wireless systems by first establishing a connection with a target system before disconnecting from a serving system are disclosed. In one design, the UE may initially communicate with a first wireless system (e.g., a WLAN system) of a first radio technology. The UE may receive a page to establish a connection with a second wireless system (e.g., a cellular system) of a second radio technology. The first and second wireless systems may be part of a small cell. The page may be sent by the second wireless system to the UE in response to a decision by a network entity to switch the UE from the first wireless system to the second wireless system. The UE may establish a connection with the second wireless system in response to the page and may thereafter terminate communication with the first wireless system.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may determine a measurement scheme or uplink mode and then transmit an indication of the scheme or uplink mode to an associated user equipment (UE). The base station may identify a set of hidden nodes for the UE and configure the UE for autonomous or grant-based uplink transmissions accordingly. A UE may initiate a channel clearance scheme by transmitting a first channel clearance signal (e.g., a request-to-send message), which may include a UE identifier before transmitting an uplink message in the unlicensed radio frequency spectrum band. In response, the base station may transmit a second channel clearance signal (e.g., a clear-to-send message). In some cases, the second channel clearance signal may include control information or may be transmitted at a power level that is based on a characteristic of the UE.
Abstract:
Methods, systems, and devices for wireless communication are described. Various autonomous uplink control channel configurations may be used for unscheduled uplink transmissions. For example, a user equipment (UE) may initiate an unscheduled uplink transmission and may identify an autonomous uplink control channel configuration for the uplink transmission. The UE may transmit control information and data during an initial transmission time interval of a transmission opportunity according to the control channel configuration, where the control channel configuration control may include a number of different waveforms and payload configurations. For example, an autonomous uplink control channel configuration may include control information frequency division multiplexed or time division multiplexed with data and transmitted in one or more frequency interlaces. In some cases, the control channel configuration may include a symbol period for a clear-to-send signal, and one or more symbol periods used a guard period before the data transmission.
Abstract:
A method and apparatus for wireless communication in the unlicensed spectrum between an eNB and UEs having different bandwidths, e.g., between a narrowband UE and a wideband eNB. A UE apparatus transmits uplink transmissions in a plurality of transmission units and hops frequency bands in a first pattern across frames based on a base station hopping pattern. The apparatus may transmit uplink transmissions based on dual hopping patterns, and may hop in a second pattern across transmission units within the base station's channel occupancy within a frame. A base station apparatus may hop frequency bands in a first pattern across frames based on a base station hopping pattern, and may receive uplink transmissions in a narrowband from a UE in a plurality of transmission units within the frequency bands based on the base station hopping pattern.
Abstract:
This disclosure includes methods, systems, and devices for wireless communication. A repetition of symbols may be used to increase a device's ability to synchronize and communicate using unlicensed spectrum. For example, a base station may schedule a frame that includes repetitions, in time or frequency, of a control or data signal. After performing a listen-before-talk (LBT) procedure, the base station may broadcast or transmit the frame to one or more devices, such as a user equipment (UE). For instance, the frame may include repetitions of a discovery reference signal (DRS), and be broadcast by the base station to enable synchronization by the UE. In other examples, the signal may include repetitions of a cell-specific reference signal (CRS), and a UE may identify a start of a transmission opportunity using the CRSs. Other signals, such as downlink control and shared channels, may be repeated within a frame in a similar manner.
Abstract:
Methods, systems, and devices for enhanced neighbor discovery through enhanced automatic neighbor relations (ANR) and for detecting cell identifier confusion and are described. Neighboring base stations may provide information to one another, including using ANR, that may avoid or help to resolve cell identity confusion. For example, a NHN-ID may be defined to avoid or resolve cell identify confusion. A wireless device, such as a base station or a user equipment (UE), may determine whether neighboring cells are using a common cell identifier and may adjust operations accordingly. For example, a device may detect physical cell identity (PCI) confusion by determining whether two neighboring cells have the same PCI and different Evolved Universal Terrestrial Access Network (E-UTRAN) Cell Global Identifiers (ECGIs) or different Neutral Host Network Identifier (NHN-IDs). A network entity may then inform the neighboring cells having the same PCI of the confusion.
Abstract:
Methods, systems, and devices for wireless communication are described. A base station may transmit a configuration for enhanced paging to a UE being served by a cell over a shared frequency band. The enhanced paging may include multiple paging intervals for each paging cycle. The UE may enable reception for a paging interval and determine whether the UE receives a downlink transmission. The UE may lengthen a paging interval or enable reception during a second paging interval based in part on determining whether the UE receives a downlink transmission. In some examples, the UE may receive a paging queue status indication indicating that paging information will be transmitted during a paging interval or a later interval, or indicating that no paging information is present at a serving cell.
Abstract:
Methods, systems, and devices for wireless communication are described. A user equipment (UE) may monitor a neighbor cell and report the result to a serving base station. Based on the report, the serving base station may identify an estimated discovery reference signal (DRS) transmission window of the neighbor cell. In some cases, the UE may estimate and report parameters of the neighbor DRS transmission window, and in other cases, the UE may make a measurement report and the base station may infer DRS transmission window parameters. The base station may then provide the UE with a DRS measurement timing configuration (DMTC) based on the estimated parameters of the neighbor cell so that the UE may monitor the neighbor cell and the serving cell in an efficient manner. For example, the UE may conserve battery life by refraining from monitoring DRS during periods when a DRS transmission is not likely.