Abstract:
A portion of a bulk silicon (Si) is formed into a fin, having a fin base and, on the fin base, an in-process fin. The fin base is doped Si and the in-process fin is silicon germanium (SiGe). The in-process SiGe fin has a source region and a drain region. Boron is in-situ doped into the drain region and into the source region. Optionally, boron is in-situ doped by forming an epi-layer, having boron, on the drain region and on the source region, and drive-in annealing to diffuse boron in the source region and the drain region.
Abstract:
A semiconductor fin is on a substrate, and extends in a longitudinal direction parallel to the substrate. The fin projects, in a vertical direction, to a fin top at a fin height above the substrate. An embedded fin stressor element is embedded in the fin. The fin stressor element is configured to urge a vertical compression force within the fin, parallel to the vertical direction. Optionally, the semiconductor material includes silicon, and embedded fin stressor element includes silicon dioxide.
Abstract:
Methods of fabricating middle of line (MOL) layers and devices including MOL layers. A method in accordance with an aspect of the present disclosure includes depositing a hard mask across active contacts to terminals of semiconductor devices of a semiconductor substrate. Such a method also includes patterning the hard mask to selectively expose some of the active contacts and selectively insulate some of the active contacts. The method also includes depositing a conductive material on the patterned hard mask and the exposed active contacts to couple the exposed active contacts to each other over an active area of the semiconductor devices.
Abstract:
A complementary fin field-effect transistor (FinFET) includes a p-type device having a p-channel fin. The p-channel fin may include a first material that is lattice mismatched relative to a semiconductor substrate. The first material may have a compressive strain. The FinFET device also includes an n-type device having an re-channel fin. The n-channel fin may include a second material having a tensile strain that is lattice mismatched relative to the semiconductor substrate. The p-type device and the n-type device cooperate to form the complementary FinFET device.