Abstract:
Electronic devices are adapted to facilitate detection of a type of USB charger to which an electronic device is connected. According to one example, an electronic device can apply a current source to a data line of a USB plug coupled to a USB port. A determination can be made whether the data line has gone to a LOW state or remained at a HIGH state after a predetermined period of time. If the data line has gone to a LOW state, the USB port may be identified as a downstream port, such as a standard downstream port (SDP) or a charging downstream port (CDP). If the data line has remained at the HIGH state, the USB port may be identified as a dedicated charging port (DCP), no matter if it is compliant or non-compliant with the BC 1.2 spec. Other aspects, embodiments, and features are also included.
Abstract:
In certain aspects, a regulator includes a variable-impedance switch coupled between a supply rail and a circuit block, wherein an impedance of the variable-impedance switch is set by an impedance code input to the variable-impedance switch. The regulator also includes an analog-to-digital converter (ADC) configured to convert a block supply voltage at the circuit block into a voltage code, and a controller configured to adjust the impedance code based on the voltage code in a direction that reduces a difference between the block supply voltage and a target supply voltage.
Abstract:
A method of triggering a desired operating mode in a universal serial bus (USB)-compatible client device is provided. A USB-compatible client device detects that it has been coupled to a USB-compatible host device via a USB bus. The USB-compatible client device attempts to pull a data line of the USB bus high. The USB-compatible client device then ascertains that the data line remains pulled low, thereby indicating that the USB-compatible client device should enter a first mode of operation. The USB-compatible client device operates according to the first mode of operation.
Abstract:
Techniques for increased data flow in Universal Serial Bus (USB) cables are disclosed. In one aspect, two super-speed lanes may be enabled on a single USB cable. In an exemplary, non-limiting aspect, the USB cable is a Type-C cable. In further non-limiting aspects, the super-speed lanes may be present even if there is no USB 2.0 lane present on the D+/D− pins of the USB cable. Use of the second super-speed lane increases data throughput. Eliminating the requirement that the D+/D− pins be used for USB 2.0 data allows greater flexibility in the use of the USB connection because audio or video data may be sent over the D+/D− pins instead of USB 2.0 data. Further, the use of the two super-speed lanes allows a single computing element to operate as a host on one lane and a device on a second lane.
Abstract:
Electronic devices are adapted to facilitate detection of a type of USB charger to which an electronic device is connected. According to one example, an electronic device can apply a current source to a data line of a USB plug coupled to a USB port. A determination can be made whether the data line has gone to a LOW state or remained at a HIGH state after a predetermined period of time. If the data line has gone to a LOW state, the USB port may be identified as a downstream port, such as a standard downstream port (SDP) or a charging downstream port (CDP). If the data line has remained at the HIGH state, the USB port may be identified as a dedicated charging port (DCP), no matter if it is compliant or non-compliant with the BC 1.2 spec. Other aspects, embodiments, and features are also included.
Abstract:
Apparatuses and methods to distinguish proprietary, non-floating and floating chargers for regulating charging current are disclosed. In one aspect, a charger detection circuit is provided in a portable electronic device. The charger detection circuit is configured to detect whether a connected Universal Serial Bus (USB) charger is compliant with a USB battery charging specification. If the connected USB charger is non-compliant with the USB battery charging specification, the charger detection circuit is configured to further detect if the non-complaint USB charger is a non-compliant floating USB charger or a non-compliant proprietary USB charger. If the connected USB charger is determined to be a non-compliant proprietary USB charger, the portable electronic device can be configured to draw up to a maximum charging current according to the USB battery charging specification.
Abstract:
Apparatuses and methods to distinguish proprietary, non-floating and floating chargers for regulating charging current are disclosed. In one aspect, a charger detection circuit is provided in a portable electronic device. The charger detection circuit is configured to detect whether a connected Universal Serial Bus (USB) charger is compliant with a USB battery charging specification. If the connected USB charger is non-compliant with the USB battery charging specification, the charger detection circuit is configured to further detect if the non-complaint USB charger is a non-compliant floating USB charger or a non-compliant proprietary USB charger. If the connected USB charger is determined to be a non-compliant proprietary USB charger, the portable electronic device can be configured to draw up to a maximum charging current according to the USB battery charging specification.
Abstract:
Sense amplifiers that can provide improved resolving times can be used, for example, in clock and data recovery circuits. The sense amplifiers sense the value of a differential input signal using a latch circuit and then, after an initial sensing time, force the latch circuit to resolve a digital value that corresponds to the value of the input signal. An implementation of the sense amplifies uses a first latch with cross-coupled inverters that produce set and reset signals. A transistor pair couples the differential input signal to the cross-coupled inverters via a switch to ground. A discharge path circuit arranged to accelerate the resolving of the latch circuit is also coupled to the cross-coupled inverters. The discharge path can be enabled after an initial sensing time.
Abstract:
A series of current repeaters with localized feedback is provided. Each current that precedes a subsequent current repeater in the series is configured to receive a feedback current from the subsequent current repeater and generate an error signal accordingly with a differential amplifier so as to reduce current repetition errors that would otherwise result from an offset voltage in the differential amplifier.