Abstract:
Teleconferencing is performed between two telecommunication devices having a display device and a stereoscopic pair of cameras positioned outside opposed sides of the display device at the same level partway along those sides. The separation between the centers of the cameras is in a range having a lower limit of 60 mm and an upper limit of 110 mm to improve the perceived roundness in a displayed stereoscopic image of a head. In captured stereo images that are video images, a head is segmented and the segmented backgrounds are replaced by replacement images that have a lower degree of perceived stereoscopic depth to compensate for non-linear depth perception in the displayed stereo images. Images are shifted vertically to position an eye-line of a detected face at the level of the stereoscopic pair of cameras of the telecommunication device where the images are displayed, improving the naturalness of the displayed image.
Abstract:
An autostereoscopic display apparatus may include a stepped waveguide, optical elements, and one or more reflective imaging and/or directional elements. These elements may be arranged to return light from the stepped waveguide into an array of viewing windows. Such elements can be used to achieve observer tracking autostereoscopic display for landscape and portrait modes of operation. System thickness and cost may be reduced and system brightness can be increased or low operating power modes may be achieved.
Abstract:
Teleconferencing is performed between two telecommunication devices having a display device and a stereoscopic pair of cameras positioned outside opposed sides of the display device at the same level partway along those sides. The separation between the centers of the cameras is in a range having a lower limit of 60 mm and an upper limit of 110 mm to improve the perceived roundness in a displayed stereoscopic image of a head. In captured stereo images that are video images, a head is segmented and the segmented backgrounds are replaced by replacement images that have a lower degree of perceived stereoscopic depth to compensate for non-linear depth perception in the displayed stereo images. Images are shifted vertically to position an eye-line of a detected face at the level of the stereoscopic pair of cameras of the telecommunication device where the images are displayed, improving the naturalness of the displayed image.
Abstract:
The PCS may include a polarizing beam splitter, a polarization rotating element, a reflecting element, and a polarization switch. Typically, a projector outputs randomly-polarized light. This light is input to the PCS, in which the PCS separates p-polarized light and s-polarized light at the polarizing beam splitter. P-polarized light is directed toward the polarization switch on a first path. The s-polarized light is passed on a second path through the polarization rotating element (e.g., a half-wave plate), thereby transforming it to p-polarized light. A reflecting element directs the transformed polarized light (now p-polarized) along the second path toward the polarization switch. The first and second light paths are ultimately directed toward a projection screen to collectively form a brighter screen image in cinematic applications utilizing polarized light for three-dimensional viewing.
Abstract:
A method for providing optimal correction to depth mapping between captured and displayed stereoscopic content. The solution is derived in a continuous form that can be implemented through CGI scaling techniques compatible with image rendering techniques. Similar correction can be implemented with variable depth-dependent camera separation and disparity re-mapping. The latter is applicable to correcting existing stereoscopic content.
Abstract:
A directional display may include a waveguide. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. A further spatially multiplexed display device comprising a spatial light modulator and parallax element is arranged to cooperate with the illumination from the waveguide. An efficient and bright autostereoscopic display system with low cross talk and high resolution can be achieved.
Abstract:
A light emitting diode package for a directional display may comprise light emitting diodes and a protection diode. The protection diode may be arranged in a well that is at a different location to the well that the light emitting diodes are arranged. The directional display may include a waveguide. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. The brightness of the directional display can be increased. An efficient and bright directional display system can be achieved. Efficient light baffling for light escaping from the edge of the waveguide is achieved through light deflecting extraction films.
Abstract:
A spatially multiplexed autostereoscopic display is arranged to provide landscape and portrait operation. Multiple optical windows may be provided by spatial and temporal multiplexing techniques. A fast response lens array pair is aligned with a fast response spatial light modulator, and synchronized to provide first and second sets of images with first and second respective directionalities to provide first and second sets of respective optical windows. The first and second sets of optical windows may each comprise two or more optical windows in each viewing lobe. The optical windows may be arranged with an inclination to the vertical of 25 degrees to 65 degrees. An observer tracking system may be arranged to direct left and right eye image data to the left and right eyes of an observer, respectively, for landscape and portrait orientations of the display.
Abstract:
A polarization conversion system separates light from an unpolarized image source into a first state of polarization (SOP) and an orthogonal second SOP, and directs the polarized light on first and second light paths. The SOP of light on only one of the light paths is transformed to an orthogonal state such that both light paths have the same SOP. A polarization modulator temporally modulates the light on the first and second light paths to first and second output states of polarization. First and second projection lenses direct light on the first and second light paths toward a projection screen to form substantially overlapping polarization encoded images. The polarization modulator may be located before or after the projection lenses. The polarization-encoded images may be viewed using eyewear with appropriate polarization filters.
Abstract:
A directional display may include a waveguide. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. The brightness of the directional display can be increased. An efficient and bright autostereoscopic display system can be achieved.