Abstract:
A fully additive method for forming optical waveguides and devices, such as thermo-optic polymer switches and electro-optic polymer modulators, is disclosed. A first polymer material of refractive index N1 is coated onto a suitable substrate to form a first cladding layer. The first cladding is then selectively patterned using a mold to form an impression of the waveguide core into the first cladding layer. Next, a core layer is formed by ink-jet printing onto the imprinted first cladding layer with a core material of refractive index N2 (N2>N1). The core layer is subsequently coated by ink-jet printing with a second polymer material of refractive index N3 (N3
Abstract:
Methods and systems for a label-free on-chip optical absorption spectrometer consisting of a photonic crystal slot waveguide are disclosed. The invention comprises an on-chip integrated optical absorption spectroscopy device that combines the slow light effect in photonic crystal waveguide and optical field enhancement in a slot waveguide and enables detection and identification of multiple analytes to be performed simultaneously using optical absorption techniques leading to a device for chemical and biological sensing, trace detection, and identification via unique analyte absorption spectral signatures. Other embodiments are described and claimed.
Abstract:
A fully additive method for forming multilayer electrical interconnects for printed electronic and/or optoelectronic devices is disclosed. Electrical interconnects are fabricated by directly ink-jet printing a dielectric material with selective interconnection holes, and then ink jet printing conductive patterns and filling the interconnection holes with conductive material to form multilayer interconnects. A method for manufacturing a multilayer printed electronic system utilizing the invention is also disclosed. Other embodiments are described and claimed.
Abstract:
Methods and systems for label-free multiple analyte sensing, biosensing and diagnostic assay chips consisting of an array of photonic crystal microcavities along a single photonic crystal waveguide are disclosed. The invention comprises an on-chip integrated microarray device that enables detection and identification of multiple species to be performed simultaneously using optical techniques leading to a high throughput device for chemical sensing, biosensing and medical diagnostics. Other embodiments are described and claimed.
Abstract:
Methods and systems for label-free multiple analyte sensing, biosensing and diagnostic assay chips consisting of an array of photonic crystal microcavities along a single photonic crystal waveguide are disclosed. The invention comprises an on-chip integrated microarray device that enables detection and identification of multiple species to be performed simultaneously using optical techniques leading to a high throughput device for chemical sensing, biosensing and medical diagnostics. Other embodiments are described and claimed.
Abstract:
Methods and systems for label-free multiple analyte sensing, biosensing and diagnostic assay chips consisting of an array of photonic crystal microcavities along a single photonic crystal waveguide are disclosed. The invention comprises an on-chip integrated microarray device that enables detection and identification of multiple species to be performed simultaneously using optical techniques leading to a high throughput device for chemical sensing, biosensing and medical diagnostics. Other embodiments are described and claimed.
Abstract:
Methods and systems for label-free on-chip optical absorption spectrometer consisting of a photonic crystal slot waveguide are disclosed. The invention comprises an on-chip integrated optical absorption spectroscopy device that combines the slow light effect in photonic crystal waveguide and optical field enhancement in a slot waveguide and enables detection and identification of multiple analytes to be performed simultaneously using optical absorption techniques leading to a device for chemical and biological sensing, trace detection, and identification via unique analyte absorption spectral signatures. Other embodiments are described and claimed.
Abstract:
The present invention is a three-dimensional tapered waveguide coupler capable of interconnecting electro-optical devices with differing optical mode profiles. The ends of the waveguide are configured to match the optical mode profiles of the electro-optical devices that the waveguide interconnects. The waveguide adiabatically transmits the fundamental mode of the photo-optic signal from the electro-optical device at the waveguide's input end to a different electro-optical device at the waveguide's output end. A single coupler can be configured with one or more waveguides, each waveguide having different optical mode profiles at either end and different optical transmission characteristics.
Abstract:
Accordingly, a beam-splitting ball lens is provided. The beam-splitting ball lens has: a ball lens; and a beam-splitter filter disposed within the ball lens. The ball lens preferably has first and second portions wherein the beam-splitter filter is disposed at a junction between the first and second portions. The beam-splitting ball lens can further have a mid-plane optical element disposed at the junction such as, a wavelength selective filter, a polarization component, an amplitude modulation mask, a phase modulation mask, a hologram and/or a grating. Also provided is a method for fabricating the beam-splitting ball lens of the present invention. The method includes the steps of: providing the ball lens; and disposing the beam-splitter filter within the ball lens. Preferably the disposing step includes: dividing the ball lens into first and second portions; and disposing the beam-splitter filter at the junction between the first and second portions. Also provided is a mount for the beam-splitting ball lens of the present invention. The mount has a body, the body having screws to retain the beam-splitting ball lens therein. The body further having access holes for two inputs and two outputs corresponding to the two inputs. The access holes being aligned with the beam-splitter filter such that light inputted to the inputs are directed to corresponding outputs.
Abstract:
A system and method for wavelength division multiplexing and demultiplexing are disclosed. The disclosed system may include a fiber optic element operable to transmit a multiplexed light signal. The system may also include a light focusing device, and the fiber optic element may be oriented to project light through the light focusing device. An additional element may be a diffraction grating having a diffraction order greater than one. The diffraction grating may be positioned in a Littrow configuration with respect to the light focusing device and may have a groove spacing equal to or larger than three times the wavelength of light used in the system.