Abstract:
Polycarbonate blend compositions are disclosed. The compositions include at least one polycarbonate useful for high heat applications. The compositions can include one or more additional polymers. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezels.
Abstract:
Interior railway components (seat components and claddings) comprise a thermoplastic composition comprising: a first polymer comprising bisphenol A carbonate units and monoaryl arylate units, or a second polymer comprising bisphenol A carbonate units, monoaryl arylate units, and siloxane units, or a combination comprising at least one of the foregoing; and a polyetherimide; wherein a sample of the thermoplastic composition has: a smoke density after 4 minutes (Ds-4) of ≤150 measured in accordance with ISO 5659-2 on a 3 mm thick plaque, an integral of the smoke density as a function of time up to 4 minutes (VOF4)≤300 measured in accordance with ISO 5659-2, a maximum average heat release (MAHRE) of ≤300 90 kW/m2 measured in accordance with ISO 5660-1 on a 3 mm thick plaque, and a ductility in multiaxial impact of 80 to 100%, measured in accordance with ISO 6603.
Abstract:
A thermoplastic composition comprising, based on the total weight of the thermoplastic composition, 5 to 30 wt. % of a poly(arylene ether-sulfone); and 50 to 95 wt. % of a polycarbonate component comprising a poly(carbonate-siloxane) and optionally a polycarbonate homopolymer; wherein a sample of the composition has a notched Izod impact value of greater than or equal to 30 kJ/m2; a tensile yield strength retention of 80% and higher after exposure of an ISO tensile bar for 24 hours to sunscreen under 0.5% strain compared to a non-exposed reference; and an elongation at break retention of 80% and higher after exposure of an ISO tensile bar for 24 hours to sunscreen under 0.5% strain compared to a non-exposed reference.
Abstract:
A thermoplastic composition comprises, based on the total weight of the thermoplastic composition, 10 to 45 wt. % of a poly(etherimide); 35 to 90 wt. % of a polycarbonate component comprising a polycarbonate homopolymer, a poly(carbonate-siloxane), or a combination thereof; 0.5 to 20 wt. % of a compatibilizer polycarbonate component comprising a poly(carbonate-arylate ester), a phthalimidine copolycarbonate, or a combination thereof; up to 5 wt. % of an ultraviolet light stabilizer; and 0 to 20 wt. % of TiO2,wherein a sample of the composition has a 50% higher notched Izod impact energy value compared to the composition without the compatibilizer component.
Abstract:
Metallized articles comprising polycarbonate compositions are disclosed. The compositions include at least one first polycarbonate useful for high heat applications, a second polycarbonate that is a Bisphenol A (BPA) polycarbonate-polydimethyl-siloxane copolymer; and optionally a third polycarbonate. The compositions can include one or more additives. The compositions can be used to prepare articles of manufacture, and in particular, automotive bezel.
Abstract:
This disclosure relates to thermoplastic compositions comprising a polycarbonate copolymer, the polycarbonate copolymer comprising first repeating carbonate units and second repeating units selected from carbonate units that are different from the first carbonate units, polysiloxane units, and a combination comprising at least one of the foregoing unit; and an organophosphorus flame retardant in an amount effective to provide 0.1 to 1.0 wt % phosphorus based on the total weight of the composition, wherein an article molded from the composition has a smoke density after 4 minutes (Ds-4) of less than or equal to 600 determined according to ISO 5659-2 on a 3 mm thick plaque, and a material heat release of less than or equal to 160 kW/m2 determined according to ISO 5660-1 on a 3 mm thick plaque.