Abstract:
An embodiment of a display device includes: a first display area; a second display area including a transmission area; a third display area between the first display area and the second display area; and a plurality of pixel circuits in the third display area and electrically connected to the plurality of third light-emitting elements, respectively. Each of the plurality of pixel circuits includes: a first thin-film transistor including a first semiconductor layer and a first gate electrode overlapping at least a portion of the first semiconductor layer; a second thin-film transistor including a second semiconductor layer including a material different from that of the first semiconductor layer and a second gate electrode overlapping at least a portion of the second semiconductor layer; and a bottom shielding layer below the second semiconductor layer and overlapping at least a portion of the second semiconductor layer on a plane.
Abstract:
A display device includes pixels, and each pixel is connected between a first electrode or a second electrode of a driving transistor and a bias line, includes a bias transistor configured to transfer a bias voltage applied from the bias line to the first electrode or the second electrode of the driving transistor during a bias period. Bias voltages applied to the pixels emitting light of different colors are different from each other.
Abstract:
An organic light emitting display device includes a substrate, a light emitting diode, a first transistor controlling a driving current of the light emitting diode, a second transistor including a second drain electrode connected to a first source electrode of the first transistor, a second gate electrode, a second channel overlapped with the second gate electrode when viewed in a plan view, a second source electrode facing the second drain electrode with the second channel interposed therebetween, and a lower gate electrode, and a plurality of driving voltage lines transmitting a first driving voltage. The lower gate electrode of the second transistor is overlapped with the second channel when viewed in a plan view, and the lower gate electrode is electrically connected to a corresponding driving voltage line among the driving voltage lines.
Abstract:
An organic light-emitting display apparatus includes: a substrate; first electrodes arranged on the substrate at separate positions; a second electrode disposed on the first electrodes to face the first electrodes; an intermediate layer disposed between the first electrodes and the second electrode and including an emission layer; a first encapsulating layer disposed on the second electrode and patterned to have a plurality of islands, the first encapsulating layer including an organic material; and a second encapsulating layer covering the islands of the first encapsulating layer and including an inorganic material.
Abstract:
An organic light emitting diode (OLED) display includes: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the metal oxide layer and covering a relatively larger area than the metal oxide layer; a first organic layer formed on the first inorganic layer and covering a relatively smaller area than the first inorganic layer; and a second inorganic layer formed on the first organic layer, covering a relatively larger area than the first organic layer, and contacting the first inorganic layer at an edge of the second inorganic layer.
Abstract:
A display panel includes: a substrate including a component area and a main area surrounding at least a portion of the component area, the component area including a pixel area and a transmission area; a display element layer on the substrate, the display element layer including a first display element overlapping the pixel area of the component area in a plan view, a second display element overlapping the pixel area of the component area, and a pixel defining layer defining therein a first opening and a second opening defining an emission area of the first display element and an emission area of the second display element, respectively; and an anti-reflective layer on the display element layer, the anti-reflective layer including a black matrix defining therein a first upper opening overlapping the first opening and the second opening, and a first color filter overlapping the first upper opening.
Abstract:
An organic light emitting diode (OLED) display including: a substrate; an organic light emitting diode formed on the substrate; a metal oxide layer formed on the substrate and covering the organic light emitting diode; a first inorganic layer formed on the substrate and covering the organic light emitting diode; a second inorganic layer formed on the first inorganic layer and contacting the first inorganic layer at an edge of the second inorganic layer; an organic layer formed on the second inorganic layer and covering a relatively smaller area than the second inorganic layer; and a third inorganic layer formed on the organic layer, covering a relatively larger area than the organic layer, and contacting the first inorganic layer and the second inorganic layer at an edge of the third inorganic layer.
Abstract:
A display panel includes: a substrate including a component area and a main area surrounding at least a portion of the component area, the component area including a pixel area and a transmission area; a display element layer on the substrate, the display element layer including a first display element overlapping the pixel area of the component area in a plan view, a second display element overlapping the pixel area of the component area, and a pixel defining layer defining therein a first opening and a second opening defining an emission area of the first display element and an emission area of the second display element, respectively; and an anti-reflective layer on the display element layer, the anti-reflective layer including a black matrix defining therein a first upper opening overlapping the first opening and the second opening, and a first color filter overlapping the first upper opening.
Abstract:
A display apparatus includes: a first thin-film transistor (TFT) including a first semiconductor layer including a silicon semiconductor; a second TFT including a second semiconductor layer including an oxide semiconductor; a first shielding layer configured to overlap the first TFT and positioned between a substrate and the first TFT; and a second shielding layer configured to overlap the second TFT and positioned between the substrate and the second TFT.
Abstract:
A display device includes: a first electrode layer; a semiconductor layer including a source region, a drain region, and a channel region, wherein at least a portion of the source region or the drain region overlaps the first electrode layer; a second electrode layer arranged adjacent to the channel region; a third electrode layer overlapping the second electrode layer and at least a portion of the source region or the drain region; and a power line electrically connected to the first electrode layer and the third electrode layer.