Abstract:
A light emitting diode device includes a thin film transistor substrate having a plurality of light emitting areas, a first diode electrode and a second diode electrode on the thin film transistor substrate, a first passivation pattern between the first diode electrode and the second diode electrode, a plurality of micro light emitting diodes on the first passivation pattern, a first bridge pattern on the micro light emitting diodes and electrically connecting the first diode electrode to the micro light emitting diodes, and a second bridge pattern on the first bridge pattern and electrically connecting the second diode electrode to the micro light emitting diodes, wherein each sidewall of each of the micro light emitting diodes and each sidewall of the first passivation pattern form a same plane.
Abstract:
An manufacturing method of a display device may include the following steps: forming a transistor on a substrate; forming an insulating layer on the transistor; forming a conductive layer including silver on the insulating layer; forming a photosensitive member on the conductive layer; forming an electrode of a light-emitting element by etching the conductive layer; performing plasma treatment on a structure that comprises the electrode, the plasma treatment using a gas including a halogen; and removing a product that is resulted from the plasma treatment.
Abstract:
A thin film transistor array panel includes: a substrate, a gate line positioned on the substrate and including a gate electrode, a semiconductor layer positioned on the substrate and including an oxide semiconductor, a data wire layer positioned on the substrate and including a data line crossing the gate line, a source electrode connected to the data line, and a drain electrode facing the source electrode, and a capping layer covering the data wire layer, in which an end of the capping layer is inwardly recessed as compared to an end of the data wire layer.
Abstract:
A display device includes: a substrate; a semiconductor on the substrate; a first gate insulating layer on the semiconductor; a gate electrode on the first gate insulating layer, and overlapping with the semiconductor; a signal line spaced from the gate electrode; a sacrificial layer on the signal line, and including an amorphous silicon material; an interlayer insulating layer on the gate electrode and the sacrificial layer; a source electrode on the interlayer insulating layer, and connected to a first region of the semiconductor; a drain electrode on the interlayer insulating layer, and connected to a second region of the semiconductor; and a connecting member on the interlayer insulating layer, and connected to the signal line.
Abstract:
A display device includes a thin film transistor on a base substrate and a signal wiring electrically connected to the thin film transistor. The signal wiring includes a main conductive layer including copper, and a capping layer including titanium the capping layer overlapping a portion of an upper surface of the main conductive layer. The signal wiring has a taper angle in a range of about 70° to about 90°. A thickness of the capping layer is in a range of about 100 Å to about 300 Å, and a thickness of the main conductive layer is in a range of about 1,000 Å to about 20,000 Å.
Abstract:
A display device includes a substrate; a first circuit part and a second circuit part on the substrate and spaced from each other in a first direction; and an emission part between the first circuit part and the second circuit part, the emission part being located between the first circuit part and the second circuit part in a direction parallel to the substrate, wherein the first circuit part includes a first electrode extending to the emission part, wherein the second circuit part includes a second electrode extending to the emission part, and wherein the emission part includes a light emitting element located between the first electrode and the second electrode.
Abstract:
An manufacturing method of a display device may include the following steps: forming a transistor on a substrate; forming an insulating layer on the transistor; forming a conductive layer including silver on the insulating layer; forming a photosensitive member on the conductive layer; forming an electrode of a light-emitting element by etching the conductive layer; performing plasma treatment on a structure that comprises the electrode, the plasma treatment using a gas including a halogen; and removing a product that is resulted from the plasma treatment.
Abstract:
A light emitting diode device includes a thin film transistor substrate having a plurality of light emitting areas, a first diode electrode and a second diode electrode on the thin film transistor substrate, a first passivation pattern between the first diode electrode and the second diode electrode, a plurality of micro light emitting diodes on the first passivation pattern, a first bridge pattern on the micro light emitting diodes and electrically connecting the first diode electrode to the micro light emitting diodes, and a second bridge pattern on the first bridge pattern and electrically connecting the second diode electrode to the micro light emitting diodes, wherein each sidewall of each of the micro light emitting diodes and each sidewall of the first passivation pattern form a same plane.
Abstract:
A transistor array panel is manufactured by a method that reduces or obviates the need for highly selective etching agents or complex processes requiring multiple photomasks to create contact holes. The panel includes: a substrate; a buffer layer positioned on the substrate; a semiconductor layer positioned on the buffer layer; an intermediate insulating layer positioned on the semiconductor layer; and an upper conductive layer positioned on the intermediate insulating layer, wherein the semiconductor layer includes a first contact hole, the intermediate insulating layer includes a second contact hole positioned in an overlapping relationship with the first contact hole, and the upper conductive layer is in contact with a side surface of the semiconductor layer in the first contact hole.
Abstract:
A thin film transistor array panel according to an exemplary embodiment of the invention includes: a substrate, a gate line disposed on the substrate and including a gate electrode, a gate insulating layer disposed on the gate line, a semiconductor disposed on the gate insulating layer, a data line disposed on the semiconductor and including a source electrode, a drain electrode disposed on the semiconductor and opposite to the source electrode, a color filter disposed on the gate insulating layer, the data line and the drain electrode, an overcoat disposed on the color filter and including an inorganic material, a contact hole defined in the color filter and the overcoat, where the contact hole exposes the drain electrode, and a pixel electrode disposed on the overcoat and connected through the contact hole to the drain electrode, in which a plane shape of the contact hole in the overcoat and a plane shape of the contact hole in the color filter are substantially the same as each other.