Abstract:
Provided is a spectral imaging apparatus. The spectral imaging apparatus includes: an optical filter including a plurality of band filter units having different center wavelengths; a sensing device configured to receive light passing through the optical filter; an imaging lens array including a plurality of lens units which respectively correspond to the plurality of band filter units and each implement imaging on the sensing device; and a transparent substrate which is apart from the sensing device. At least one of the optical filter and the imaging lens array is provided on the transparent substrate.
Abstract:
Provided are an optical filter and a spectrometer including the optical filter. The optical filter includes at least one first filter element having a first center wavelength of a first wavelength band, and at least one second filter element arranged on a same plane as the at least one first filter element, the at least one second filter element having a second center wavelength of a second wavelength band. The at least one first filter element includes a first bandpass filter including a plurality of first Bragg reflective layers and at least one first cavity provided between the plurality of first Bragg reflective layers, and a first multi-layer provided on the first bandpass filter, the first multi-layer having a center wavelength different than the first center wavelength of the first Bragg reflective layers in order to block light of a wavelength band other than the first wavelength band.
Abstract:
Provided is a surface-enhanced Raman scattering (SERS) patch configured to be brought into contact with an object and amplify Raman light generated from the object that is irradiated by laser light. The SERS patch includes a flexible substrate including a first surface facing the object and a second surface opposite to the first surface, a SERS layer provided on the first surface and configured to amplify the Raman light generated from the object based on surface plasmons, and a metalens provided on the first surface or the second surface of the flexible substrate, the metalens being configured to focus at least one of the laser light and the amplified Raman light in a propagation direction thereof.
Abstract:
A tunable laser device is provided. The tunable laser device includes an active layer configured to generate first light by a first source; first and second reflective layers spaced apart from each other having the active layer disposed between the first reflective layer and the second reflective layer to form a resonance cavity; and a variable refractive index unit in the resonance cavity and having a refractive index being variable according to a second source, the second source being different from the first source.
Abstract:
Provided are nanostructures and optical devices having the nanostructures. The nanostructure may include a carbon nanomaterial layer, a nanopattern formed on the carbon nanomaterial layer, and a metal layer formed on a surface of the nanopattern. The nanostructure may be formed in a ring shape, and the metal layer may include a plurality of metal layers formed of different metals.
Abstract:
A semiconductor device, a method for manufacturing the same, and an electronic device including the same are provided. The semiconductor device includes a first transistor and a second transistor. The first transistor includes a first channel layer and a first ion gel. The second transistor includes a second channel layer and a second ion gel. The first channel layer and the second channel layer may include, for example, graphene. The first ion gel and the second ion gel include different ionic liquids. The first ion gel and the second ion gel include different cations and/or different anions. One of the first transistor and the second transistor is a p-type transistor, and the other one is an n-type transistor. The combination of the first transistor and the second transistor constitutes an inverter.
Abstract:
A multi-wavelength surface plasmon laser that simultaneously emits surface plasmons having a large number of wavelengths and includes an active layer whose thickness changes with position, and a metal cavity whose length changes with position so that light of different wavelengths is emitted according to position. Surface plasmons are generated at the interface between a metal layer and a semiconductor layer in response to the light of different wavelengths. The surface plasmons having different wavelengths may be resonated in the metal cavity whose length changes with position and may be emitted to the outside.
Abstract:
Provided is a polarization spectral filter, including: a first reflector and a second reflector disposed to face each other in a first direction; and a grating layer disposed between the first reflector and the second reflector. The grating layer includes a plurality of first grating elements and a plurality of second grating elements, the plurality of first grating elements and the plurality of second grating elements being alternately arranged in a second direction perpendicular to the first direction. The plurality of first grating elements include a first dielectric material having a first refractive index. The plurality of second grating elements include a second dielectric material having a second refractive index different from the first refractive index.
Abstract:
A light filter and a spectrometer including the light filter are disclosed. The light filter includes a plurality of filter units having different resonance wavelengths, wherein each of the plurality of filter units includes a cavity layer configured to output light of constructive interference, a Bragg reflection layer provided on a first surface of the cavity layer, and a pattern reflection layer provided on a second surface of the cavity layer opposite to the first surface and configured to cause guided mode resonance of light incident on the pattern reflection layer, the pattern reflection layer including a plurality of reflection structures that are periodically arranged.
Abstract:
Provided is a polarization spectral filter, including: a first reflector and a second reflector disposed to face each other in a first direction; and a grating layer disposed between the first reflector and the second reflector. The grating layer includes a plurality of first grating elements and a plurality of second grating elements, the plurality of first grating elements and the plurality of second grating elements being alternately arranged in a second direction perpendicular to the first direction. The plurality of first grating elements include a first dielectric material having a first refractive index. The plurality of second grating elements include a second dielectric material having a second refractive index different from the first refractive index.