Abstract:
Systems and method relating generally to solid state memory, and more particularly to systems and methods for recycling data in a solid state memory. The systems and methods include receiving a data set maintained in a memory device, applying at least one iteration of a data decoding algorithm to the data set by a data decoder circuit to yield a decoded output, counting the number of iterations of the data decoding algorithm applied to the data set to yield an iteration count, and recycling the data set to the memory device. The recycling is triggered based at least in part on the iteration count.
Abstract:
A low density parity check decoder includes a variable node processor operable to generate variable node to check node messages and to calculate perceived values based on check node to variable node messages, a check node processor operable to generate the check node to variable node message vectors and to calculate checksums based on the variable node to check node messages, and a convergence detector and bit map generator operable to convergence of the perceived values and to generate at least one bit map that identifies variable nodes that are connected to check nodes with unsatisfied parity checks.
Abstract:
Systems and method relating generally to solid state memory, and more particularly to systems and methods for recycling data in a solid state memory. The systems and methods include receiving a data set maintained in a memory device, applying at least one iteration of a data decoding algorithm to the data set by a data decoder circuit to yield a decoded output, counting the number of iterations of the data decoding algorithm applied to the data set to yield an iteration count, and recycling the data set to the memory device. The recycling is triggered based at least in part on the iteration count.
Abstract:
An adaptive channel tracking algorithm performed by a flash memory system obtains disparity metrics and derivative metrics and uses a combination of the disparity and derivative metrics to estimate an optimal read reference voltage. The estimation of the optimal read reference voltage does not rely on assumptions about the underlying cell voltage distributions and results in a good estimate of the read reference voltage even if the standard deviations of the cell voltage distributions are different. In addition, the algorithm is relatively simple and less computationally intensive to perform than the known tracking algorithms.
Abstract:
An adaptive channel tracking algorithm performed by a flash memory system obtains disparity metrics and derivative metrics and uses a combination of the disparity and derivative metrics to estimate an optimal read reference voltage. The estimation of the optimal read reference voltage does not rely on assumptions about the underlying cell voltage distributions and results in a good estimate of the read reference voltage even if the standard deviations of the cell voltage distributions are different. In addition, the algorithm is relatively simple and less computationally intensive to perform than the known tracking algorithms.
Abstract:
An apparatus includes a memory and a controller. The memory may be configured to store data. The controller may be configured to process a plurality of input/output requests to a plurality of blocks of the memory that are not marked as bad on a block list, perform a code rate test that programs the plurality of blocks of the memory at three or more code rates of an error correction code scheme, and mark any of the plurality of blocks identified as bad during the code rate test on the block list.
Abstract:
Channel information and channel conditions determined by an Offline Tracking process are used to determine whether or not an adjustment to the read reference voltage can be avoided altogether without detrimentally affecting performance, or, alternatively, to determine a precision with which a read reference voltage adjustment should be made. If it is determined based on the channel conditions that a read reference voltage adjustment can be avoided altogether, read performance is improved by reducing the probability that a read reference voltage adjustment needs to be made during normal read operations. If it is determined based on the channel conditions that a read reference voltage adjustment needs to be made with a particular precision, the read reference voltage is so adjusted. This latter approach is advantageous in that relatively fewer adjustments will be made during normal read operations.
Abstract:
Systems and method relating generally to solid state memory, and more particularly to systems and methods for generated data from a solid state memory. A data processing system includes a solid state memory device, a soft data generation circuit operable to receive multiple instances of an element of a read data set accessed from the solid state memory device, and access a scramble compensating extended look up table using the multiple instances of the element to receive corresponding soft data, and a data decoder circuit operable to yield a decoded output from the soft data.
Abstract:
Log likelihood ration (LLR) values that are computed in a flash memory controller during read retries change over time as the number of program-and-erase cycles (PECs) that the flash memory die has been subjected to increases. Therefore, in cases where an LLR table is used to provide pre-defined, fixed LLR values to the error-correcting code (ECC) decoding logic of the controller, decoding success and the resulting BER will degrade over time as the number of PECs to which the die has been subjected increases. In accordance with embodiments, a storage system, a flash memory controller for use in the storage system and method are provided that periodically measure the LLR values and update the LLR table with new LLR values. Periodically measuring the LLR values and updating the LLR table with new LLR values ensures high decoding success and a low BER over the life of the flash memory die.
Abstract:
Systems and method relating generally to solid state memory, and more particularly to systems and methods for recycling data in a solid state memory. The systems and methods include receiving a data set maintained in a memory device, applying at least one iteration of a data decoding algorithm to the data set by a data decoder circuit to yield a decoded output, counting the number of iterations of the data decoding algorithm applied to the data set to yield an iteration count, and recycling the data set to the memory device. The recycling is triggered based at least in part on the iteration count.