Abstract:
An object is to provide a pixel structure of a display device including a photosensor which prevents changes in an output of the photosensor and a decrease in imaging quality. The display device has a pixel layout structure in which a shielding wire is disposed between an FD and an imaging signal line (a PR line, a TX line, or an SE line) or between the FD and an image-display signal line in order to reduce or eliminate parasitic capacitance between the FD and a signal line for the purpose of suppressing changes in the potential of the FD. An imaging power supply line, image-display power supply line, a GND line, a common line, or the like whose potential is fixed, such as a common potential line, is used as a shielding wire.
Abstract:
A semiconductor device with a small circuit area and low power consumption is provided. The semiconductor device includes first to fourth cells, a current mirror circuit, and first to fourth wirings, and the first to fourth cells each include a first transistor, a second transistor, and a capacitor. In each of the first to fourth cells, a first terminal of the first transistor is electrically connected to a first terminal of the capacitor and a gate of the second transistor. The first wiring is electrically connected to first terminals of the second transistors in the first cell and the second cell, the second wiring is electrically connected to first terminals of the second transistors in the third cell and the fourth cell, the third wiring is electrically connected to second terminals of the capacitors in the first cell and the third cell, and the fourth wiring is electrically connected to second terminals of the capacitors in the second cell and the fourth cell. The current mirror circuit is electrically connected to the first wiring and the second wiring.
Abstract:
A semiconductor device having a novel structure is provided. The semiconductor device includes a CPU and an accelerator. The accelerator includes a first memory circuit and an arithmetic circuit. The first memory circuit includes a first transistor. The first transistor includes a semiconductor layer containing a metal oxide in a channel formation region. The arithmetic circuit includes a second transistor. The second transistor includes a semiconductor layer containing silicon in a channel formation region. The first transistor and the second transistor are provided to be stacked. The CPU includes a CPU core including a flip-flop provided with a backup circuit. The backup circuit includes a third transistor. The third transistor includes a semiconductor layer containing a metal oxide in a channel formation region.
Abstract:
A novel comparison circuit, a novel amplifier circuit, a novel battery control circuit, a novel battery protection circuit, a power storage device, a semiconductor device, an electric device, and the like are provided. In a semiconductor device, one of a source and a drain of a first transistor is electrically connected to one of a source and a drain of a second transistor and one of a source and a drain of a third transistor; the other of the source and the drain of the third transistor is electrically connected to a first output terminal; and the other of the source and the drain of the second transistor is electrically connected to a second output terminal. The semiconductor device has a function of outputting a comparison result of a signal supplied to a gate of the second transistor and a signal supplied to a gate of the third transistor, from the first output terminal and the second output terminal; and a function of changing the potential output from the first output terminal in accordance with the potential applied to a back gate of the first transistor.
Abstract:
A semiconductor device capable of performing product-sum operation is provided. The semiconductor device includes a first memory cell, a second memory cell, and an offset circuit. The semiconductor device retains first analog data and reference analog data in the first memory cell and the second memory cell, respectively. A potential corresponding to second analog data is applied to each of them as a selection signal, whereby current depending on the sum of products of the first analog data and the second analog data is obtained. The offset circuit includes a constant current circuit comprising a transistor and a capacitor. A first terminal of the transistor is electrically connected to a first gate of the transistor and a first terminal of the capacitor. A second gate of the transistor is electrically connected to a second terminal of the capacitor. A voltage between the first terminal and the second gate of the transistor is held in the capacitor, whereby a change in source-drain current of the transistor can be suppressed.
Abstract:
An electronic device capable of efficiently recognizing a handwritten character is provided. The electronic device includes a first circuit, a display portion, and a touch sensor. The first circuit includes a neural network. The display portion includes a flexible display. The touch sensor has the function of outputting an input handwritten character as image information to the first circuit. The first circuit has the function of analyzing the image information and converting the image information into character information, and a function of displaying an image including the character information on the display portion. The analysis is performed by inference through the use of the neural network.
Abstract:
An object is to provide a pixel structure of a display device including a photosensor which prevents changes in an output of the photosensor and a decrease in imaging quality. The display device has a pixel layout structure in which a shielding wire is disposed between an FD and an imaging signal line (a PR line, a TX line, or an SE line) or between the FD and an image-display signal line in order to reduce or eliminate parasitic capacitance between the FD and a signal line for the purpose of suppressing changes in the potential of the FD. An imaging power supply line, image-display power supply line, a GND line, a common line, or the like whose potential is fixed, such as a common potential line, is used as a shielding wire.
Abstract:
In a CMOS image sensor in which a plurality of pixels is arranged in a matrix, a transistor in which a channel formation region includes an oxide semiconductor is used for each of a charge accumulation control transistor and a reset transistor which are in a pixel portion. After a reset operation of the signal charge accumulation portion is performed in all the pixels arranged in the matrix, a charge accumulation operation by the photodiode is performed in all the pixels, and a read operation of a signal from the pixel is performed per row. Accordingly, an image can be taken without a distortion.
Abstract:
To provide a semiconductor memory device which can be manufactured with high yield and which can achieve higher integration. A pair of memory cells adjacent to each other in the bit line direction is connected to a bit line through a common contact hole. The pair of memory cells adjacent to each other in the bit line direction shares an electrode connected to the bit line. An oxide semiconductor layer included in the memory cell is provided to overlap with a word line and a capacitor line. A transistor and a capacitor included in the memory cell are each provided to overlap with the bit line connected to the memory cell.
Abstract:
A low-power semiconductor device is provided. A memory device applicable to a multi-context programmable logic device (PLD) includes at least memory cells the number of which is the same as the number of contexts. Output nodes of the memory cells are electrically connected to an output node of a configuration memory through different path transistors. A circuit including a transistor and a capacitor makes a gate potential of the path transistor higher than a high-level potential. This prevents a decrease in the potential of the output node of the configuration memory due to the threshold voltage of the path transistor without an increase in power consumption.