Abstract:
In a semiconductor device including an oxide semiconductor, the amount of oxygen vacancies is reduced. Moreover, electrical characteristics of a semiconductor device including an oxide semiconductor are improved. The semiconductor device includes a transistor including a gate electrode over a substrate, a gate insulating film covering the gate electrode, an oxide semiconductor film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the oxide semiconductor film; and over the transistor, a first insulating film covering the gate insulating film, the oxide semiconductor film, and the pair of electrodes; and a second insulating film covering the first insulating film. An etching rate of the first insulating film is lower than or equal to 10 nm/min and lower than an etching rate of the second insulating film when etching is performed at 25° C. with 0.5 weight % of hydrofluoric acid.
Abstract:
A highly reliable structure is provided when high-speed driving of a semiconductor device is achieved by improving on-state characteristics of the transistor. The on-state characteristics of the transistor are improved as follows: an end portion of a source electrode and an end portion of a drain electrode overlap with end portions of a gate electrode, and the gate electrode surely overlaps with a region serving as a channel formation region of an oxide semiconductor layer. Further, embedded conductive layers are formed in an insulating layer so that large contact areas are obtained between the embedded conductive layers and the source and drain electrodes; thus, the contact resistance of the transistor can be reduced. Prevention of coverage failure with a gate insulating layer enables the oxide semiconductor layer to be thin; thus, the transistor is miniaturized.
Abstract:
An object is to provide a high reliable semiconductor device including a thin film transistor having stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (which is for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor film and reduce impurities such as moisture. Besides impurities such as moisture existing in the oxide semiconductor film, heat treatment causes reduction of impurities such as moisture existing in the gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor film and are in contact with the oxide semiconductor film.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
An object is to provide a display device which operates stably with use of a transistor having stable electric characteristics. In manufacture of a display device using transistors in which an oxide semiconductor layer is used for a channel formation region, a gate electrode is further provided over at least a transistor which is applied to a driver circuit. In manufacture of a transistor in which an oxide semiconductor layer is used for a channel formation region, the oxide semiconductor layer is subjected to heat treatment so as to be dehydrated or dehydrogenated; thus, impurities such as moisture existing in an interface between the oxide semiconductor layer and the gate insulating layer provided below and in contact with the oxide semiconductor layer and an interface between the oxide semiconductor layer and a protective insulating layer provided on and in contact with the oxide semiconductor layer can be reduced.
Abstract:
In a semiconductor device including a transistor including an oxide semiconductor film and a protective film over the transistor, an oxide insulating film containing oxygen in excess of the stoichiometric composition is formed as the protective film under the following conditions: a substrate placed in a treatment chamber evacuated to a vacuum level is held at a temperature higher than or equal to 180° C. and lower than or equal to 260° C.; a source gas is introduced into the treatment chamber so that the pressure in the treatment chamber is set to be higher than or equal to 100 Pa and lower than or equal to 250 Pa; and a high-frequency power higher than or equal to 0.17 W/cm2 and lower than or equal to 0.5 W/cm2 is supplied to an electrode provided in the treatment chamber.
Abstract:
A display device including a pixel having a memory. The pixel includes at least a display element, a capacitor, an inverter, and a switch. The switch is controlled with a signal held in the capacitor and a signal output from the inverter so that voltage is supplied to the display element. The inverter and the switch can be constituted by transistors with the same polarity. A semiconductor layer included in the pixel may be formed using a light-transmitting material. Moreover, a gate electrode, a drain electrode, and a capacitor electrode may be formed using a light-transmitting conductive layer. The pixel is formed using a light-transmitting material in such a manner, whereby the display device can be a transmissive display device while including a pixel having a memory.
Abstract:
In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the oxide semiconductor film has an amorphous structure or a microcrystalline structure, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition.
Abstract:
An object is to provide a high reliable semiconductor device including a thin film transistor having stable electric characteristics. In a method for manufacturing a semiconductor device including a thin film transistor in which an oxide semiconductor film is used for a semiconductor layer including a channel formation region, heat treatment (which is for dehydration or dehydrogenation) is performed so as to improve the purity of the oxide semiconductor film and reduce impurities such as moisture. Besides impurities such as moisture existing in the oxide semiconductor film, heat treatment causes reduction of impurities such as moisture existing in the gate insulating layer and those in interfaces between the oxide semiconductor film and films which are provided over and below the oxide semiconductor film and are in contact with the oxide semiconductor film.
Abstract:
An object is to control composition and a defect of an oxide semiconductor, another object is to increase a field effect mobility of a thin film transistor and to obtain a sufficient on-off ratio with a reduced off current. A solution is to employ an oxide semiconductor whose composition is represented by InMO3(ZnO)m, where M is one or a plurality of elements selected from Ga, Fe, Ni, Mn, Co, and Al, and m is preferably a non-integer number of greater than 0 and less than 1. The concentration of Zn is lower than the concentrations of In and M. The oxide semiconductor has an amorphous structure. Oxide and nitride layers can be provided to prevent pollution and degradation of the oxide semiconductor.