Abstract:
A semiconductor device having favorable electrical characteristics is provided. The semiconductor device in which first to third conductors are placed over a first oxide; first and second oxide insulators are placed respectively over the second and third conductors; a second oxide is placed in contact with a side surface of the first oxide insulator, a side surface of the second oxide insulator, and a top surface of the first oxide; a first insulator is placed between the first conductor and the second oxide; and the first oxide insulator and the second oxide insulator are not in contact with the first to third conductors, the first insulator, and the first oxide.
Abstract:
A first transistor, a second transistor, a capacitor, and first to third conductors are included. The first transistor includes a first gate, a source, and a drain. The second transistor includes a second gate, a third gate over the second gate, first and second low-resistance regions, and an oxide sandwiched between the second gate and the third gate. The capacitor includes a first electrode, a second electrode, and an insulator sandwiched therebetween. The first low-resistance region overlaps with the first gate. The first conductor is electrically connected to the first gate and is connected to a bottom surface of the first low-resistance region. The capacitor overlaps with the first low-resistance region. The second conductor is electrically connected to the drain. The third conductor overlaps with the second conductor and is connected to the second conductor and a side surface of the second low-resistance region.
Abstract:
A semiconductor device which has favorable electrical characteristics and can be highly integrated is provided. The semiconductor device includes a first insulator; an oxide over the first insulator; a second insulator over the oxide; a first conductor over the second insulator; a third insulator in contact with a top surface of the first insulator, a side surface of the oxide, a top surface of the oxide, a side surface of the second insulator, and a side surface of the first conductor; and a fourth insulator over the third insulator. The third insulator includes an opening exposing the first insulator, and the fourth insulator is in contact with the first insulator through the opening.
Abstract:
A semiconductor device of one embodiment of the present invention includes a semiconductor, an insulator, a first conductor, and a second conductor. In the semiconductor device, a top surface of the semiconductor has a region in contact with the insulator; a side surface of the semiconductor has a region in contact with the insulator; the first conductor has a first region overlapping with the semiconductor with the insulator positioned therebetween; the first region has a region in contact with the top surface of the semiconductor and a region in contact with the side surface of the semiconductor; the second conductor has a second region in contact with the semiconductor; and the first region and the second region do not overlap with each other.
Abstract:
A semiconductor device having a reduced amount of oxygen vacancy in a channel formation region of an oxide semiconductor is provided. Further, a semiconductor device which includes an oxide semiconductor and has improved electric characteristics is provided. Furthermore, a methods for manufacturing the semiconductor device is provided. An oxide semiconductor film is formed; a conductive film is formed over the oxide semiconductor film at the same time as forming a low-resistance region between the oxide semiconductor film and the conductive film; the conductive film is processed to form a source electrode and a drain electrode; and oxygen is added to the low-resistance region between the source electrode and the drain electrode, so that a channel formation region having a higher resistance than the low-resistance region is formed and a first low-resistance region and a second low-resistance region between which the channel formation region is positioned are formed.
Abstract:
A transistor whose channel is formed in a semiconductor having dielectric anisotropy is provided. A transistor having a small subthreshold swing value is provided. A transistor having normally-off electrical characteristics is provided. A transistor having a low leakage current in an off state is provided. A semiconductor device includes an insulator, a semiconductor, and a conductor. In the semiconductor device, the semiconductor includes a region overlapping with the conductor with the insulator positioned therebetween, and a dielectric constant of the region in a direction perpendicular to a top surface of the region is higher than a dielectric constant of the region in a direction parallel to the top surface.
Abstract:
A transistor having favorable electrical characteristics. A transistor suitable for miniaturization. A transistor having a high switching speed. One embodiment of the present invention is a semiconductor device that includes a transistor. The transistor includes an oxide semiconductor, a gate electrode, and a gate insulator. The oxide semiconductor includes a first region in which the oxide semiconductor and the gate electrode overlap with each other with the gate insulator positioned therebetween. The transistor has a threshold voltage higher than 0 V and a switching speed lower than 100 nanoseconds.
Abstract:
A semiconductor device includes a first insulating layer over a substrate, a first metal oxide layer over the first insulating layer, an oxide semiconductor layer over the first metal oxide layer, a second metal oxide layer over the oxide semiconductor layer, a gate insulating layer over the second metal oxide layer, a second insulating layer over the second metal oxide layer, and a gate electrode layer over the gate insulating layer. The gate insulating layer includes a region in contact with a side surface of the gate electrode layer. The second insulating layer includes a region in contact with the gate insulating layer. The oxide semiconductor layer includes first to third regions. The first region includes a region overlapping with the gate electrode layer. The second region, which is between the first and third regions, includes a region overlapping with the gate insulating layer or the second insulating layer. The second and third regions each include a region containing an element N (N is phosphorus, argon, or xenon).
Abstract:
In a semiconductor device including a transistor including a gate electrode formed over a substrate, a gate insulating film covering the gate electrode, a multilayer film overlapping with the gate electrode with the gate insulating film provided therebetween, and a pair of electrodes in contact with the multilayer film, a first oxide insulating film covering the transistor, and a second oxide insulating film formed over the first oxide insulating film, the multilayer film includes an oxide semiconductor film and an oxide film containing In or Ga, the oxide semiconductor film has an amorphous structure or a microcrystalline structure, the first oxide insulating film is an oxide insulating film through which oxygen is permeated, and the second oxide insulating film is an oxide insulating film containing more oxygen than that in the stoichiometric composition.
Abstract:
A highly reliable semiconductor device is provided. The semiconductor device includes a gate electrode, a gate insulating film over the gate electrode, a semiconductor film overlapping with the gate electrode with the gate insulating film positioned therebetween, a source electrode and a drain electrode that are in contact with the semiconductor film, and an oxide film over the semiconductor film, the source electrode, and the drain electrode. An end portion of the semiconductor film is spaced from an end portion of the source electrode or the drain electrode in a region overlapping with the semiconductor film in a channel width direction. The semiconductor film and the oxide film each include a metal oxide including In, Ga, and Zn. The oxide film has an atomic ratio where the atomic percent of In is lower than the atomic percent of In in the atomic ratio of the semiconductor film.