Abstract:
Generating a prediction image by performing motion compensation by using a motion vector of an encoded image, with a frame formed of a decoded image serving as a reference frame, to generate a first motion compensation image corresponding to a prediction image; and generating the prediction image by performing a filtering process on at least two motion-compensated images by using a correlation in a time direction included in the first motion compensation image and a second motion compensation image.
Abstract:
There is provided an image processing system and an image processing method able to suppress block distortion in the case of decoding Image data encoded in unit of blocks. A controlling unit selects a filtering content to be applied to the block image data based on the encoding types of the block image data to be filtered, and a filtering unit applies filtering to the block image data to be processed according to the filtering content selected by the controlling unit.
Abstract:
There is provided an image processing device and a method that enable partial decoding of 3D data to be performed more easily. Management information of a block as a partial region in a predetermined three-dimensional spatial region including 3D data representing a three-dimensional structure is generated. In addition, a block satisfying a condition specified by a user is selected on the basis of management information of the block as a partial region in a predetermined three-dimensional spatial region including 3D data representing a three-dimensional structure, and coded data of the 3D data within the selected block is decoded. The present disclosure can be applied to, for example, an image processing device, an electronic apparatus, an image processing method, a program, or the like.
Abstract:
The present disclosure relates to an image processing apparatus and a method that enable decoding of encoded data of an octree in various processing orders. The octree corresponding to point cloud data is encoded after the context is initialized for each layer of the octree. Further, a breadth-first order or a depth-first order is selected as the decoding order for the encoded data of the octree corresponding to point cloud data, and the encoded data is decoded in the selected decoding order. The present disclosure can be applied to an image processing apparatus, an electronic apparatus, an image processing method, a program, or the like, for example.
Abstract:
A filter process is performed on point cloud data using a representative value of the point cloud data for each local region obtained by dividing a three-dimensional space. A two-dimensional plane image on which the point cloud data subjected to the filter process is projected is encoded, and a bitstream is generated. The present disclosure can be applied to, for example, an information processing apparatus, an image processing apparatus, electronic equipment, an information processing method, a program, or the like.
Abstract:
The present disclosure relates to an image processing apparatus and an image processing method capable of suppressing a reduction in encoding efficiency. A bit stream is generated which contains: information indicating a correspondence relation between at least one of a geometry image obtained by projecting position information regarding 3D data representing a three-dimensional structure onto a two-dimensional plane or a texture image obtained by projecting attribute information regarding the 3D data onto a two-dimensional plane, and an occupancy map that is map information indicating whether or not data is present at each position; and encoded data regarding the geometry image, encoded data regarding the texture image, and encoded data regarding the occupancy map. The present disclosure is applicable to, for example, an information processing apparatus, an image processing apparatus, an electronic apparatus, an information processing method, a program, and the like.
Abstract:
The present disclosure relates to an information processing apparatus and an information processing method that enable processing to be performed simply, and a program. By converting a point cloud representing a three-dimensional structure into two dimensions, a geometry image and a texture image, and three-dimensional information metadata required for constructing the geometry image and the texture image in three dimensions are obtained. Then, one PC sample included in a Point Cloud displayed at a specific time is generated by storing the geometry image, the texture image, and the three-dimensional information metadata in accordance with a playback order required at a time of reproducing and playing back the geometry image and the texture image in three dimensions on the basis of the three-dimensional information metadata. It is possible to apply to a data generation device that generates data for distribution of a Point Cloud.
Abstract:
A method of compressing untracked and tracked meshes using a projection-based approach, and leveraging the tools and syntax already generated for projection-based point cloud compression is described herein. Similar to the V-PCC approach, the mesh is segmented into surface patches, where a difference is that the segments follow the connectivity of the mesh. Each surface patch (or 3D patch) is then projected to a 2D patch, whereby in the case of the mesh, the triangle surface sampling is similar to a common rasterization approach used in computer graphics. For each patch, the position of the projected vertices is kept in a list, along with the connectivity of those vertices. The sampled surface resembles a point cloud and is coded with the same approach used for point cloud compression. Additionally, the list of vertices and connectivity is encoded per patch, and the data is sent along with the coded point cloud data.
Abstract:
A method of compressing meshes using a projection-based approach, and leveraging the tools and syntax already generated for projection-based point cloud compression is described herein. Similar to the V-PCC approach, the mesh is segmented into surface patches, only the difference is that the segments follow the connectivity of the mesh. Each surface patch (or 3D patch) is then projected to a 2D patch, whereby in the case of the mesh, the triangle surface sampling is similar to a common rasterization approach used in computer graphics. For each patch, the position of the projected vertices is kept in a list, along with the connectivity of those vertices. The sampled surface now resembles a point cloud, and is coded with the same approach used for point cloud compression. Additionally, the list of vertices and connectivity is encoded per patch, and this data is sent along with the coded point cloud data.
Abstract:
An image processing apparatus and method that make it possible to decode encoded data of 3D data with increased ease. A bit stream is generated which includes projection direction information including information relating to a projection direction of position information of 3D data representative of a three-dimensional structure on a two-dimensional plane and encoded data of a geometry image obtained by projecting the position information on the two-dimensional plane.