Abstract:
A thin film transistor substrate includes a thin film transistor including a gate electrode, a semiconductor layer, a source electrode and a drain electrode. Each of the source electrode and the drain electrode includes a wire layer and a protective layer. The protective layer includes zinc oxide in an amount greater than about 70% by weight and less than about 85% by weight and indium oxide in an amount greater than about 15% by weight and less than about 30% by weight.
Abstract:
A method for forming a thin film according to an exemplary embodiment of the present invention includes forming the thin film at a power density in the range of approximately 1.5 to approximately 3 W/cm2 and at a pressure of an inert gas that is in the range of approximately 0.2 to approximately 0.3 Pa. This process results in an amorphous metal thin film barrier layer that prevents undesired diffusion from adjacent layers, even when this barrier layer is thinner than many conventional barrier layers.
Abstract:
A metal wire included in a display device, the metal wire includes a first metal layer including a nickel-chromium alloy, a first transparent oxide layer disposed on the first metal layer, and a second metal layer disposed on the first transparent oxide layer.
Abstract:
A display apparatus includes a first insulating substrate including a front surface that provides an image and a rear surface opposite to the front surface, a low reflection layer provided on the rear surface, a gate wiring part provided on the low reflection layer, a data wiring part provided on the rear surface, the data wiring part that is insulated from the gate wiring part; and a pixel which is connected to the data wiring part and displays the image, where the low reflection layer includes a polymer resin having a black color.
Abstract:
A display apparatus includes a base substrate and a buffer layer disposed on the base substrate. The display apparatus further includes an oxide semiconductor layer disposed on the buffer layer and including a source electrode, a drain electrode, and a channel portion. The display apparatus further includes a gate insulating layer disposed on the channel portion, a gate electrode disposed on the gate insulating layer, and a protective layer disposed on the gate electrode and the buffer layer and having a contact hole. The display apparatus further includes a transparent electrode overlapping a portion of the protective layer and electrically connected to one of the source electrode and the drain electrode through the contact hole. The transparent electrode includes a transparent metal layer and a transparent conductive oxide layer overlapping the transparent metal layer.