Abstract:
An ESD protective device for protection of an integrated circuit (IC) package from electrostatic discharge damage. The ESD protective device protects the internal circuit of the IC connected to wired pins of the IC package against ESD damage due to ESD stress in neighboring no-connect pins. The ESD protective device includes an ESD protective unit coupled to the power bus and a bonding pad coupled between this ESD protective device and the no-connect pin. The ESD protective unit causes ESD stress applied to the no-connect pin to be diverted to the power bus, thus preventing ESD transfer between a no-connect pin and an active pin, which could damage the internal circuit.
Abstract:
A MOSFET structure uses angled poly-gate segments positioned between drain and source diffusion regions such that the entire continuous gate element structure is within the active region in a substrate. The gate-to-source diffusion edges are continuous along the gate body, so as to cascade the snap-back action to enhance uniform turn on of the entire gate element during an ESD event. The angled gate segments provide a total gate-to-area ratio greater than that of a multi-finger-gate configuration within an equal size active region. In addition, the gate signal RC delay is sufficient to provide noise suppression of the output voltage when the MOSFET is used as a high current-drive CMOS output buffer.
Abstract:
A multi-gate-finger MOSFET structure positions the gate element over a channel between drain and source diffusion regions, such that the entire structure is within the active region in a substrate. The gate/channel-to-drain and gate/channel-to-source diffusion edges are continuous along the gate/channel layout, so as to cascade the snap-back action to enhance uniform turn on of the entire gate element during an ESD event. In addition, the gate signal RC delay is sufficient to provide noise suppression of the output voltage when the MOSFET is used as a high current-drive CMOS output buffer.
Abstract:
First and second voltage sweeps are applied to a metal-insulator-semiconductor device with the device in a deep depletion mode during at least a portion of each sweep. Capacitance-voltage characteristics of the device are determined for at least a portion of each sweep while the device is in the deep depletion mode. Minority carrier generation parameters of the device in the deep depletion mode are determined based on the capacitance-voltage characteristics for the first and second voltage sweeps.
Abstract:
ESD protection devices and methods of forming them are provided in this invention. By employing the thin gate oxide fabricated by a dual gate oxide process and breakdown-enhanced layers, ESD protection devices with a lower trigger voltage are provided. The NMOS structure for ESD protection according to the present invention has islands, a control gate and breakdown-enhanced layers. These islands as well as the breakdown-enhanced layers overlapping the drain region of the NMOS reduce the breakdown voltage of the PN junction in the drain region, thereby reducing the ESD trigger voltage and improving the ESD protection level of the NMOS. Furthermore, the invention is applicable to general integrated-circuit processes as well as various ESD protection devices.
Abstract:
An electrostatic discharge (ESD) protection device has a semiconductor bulk of a first conductivity type, a first doped region of a second conductivity type formed in the semiconductor bulk, a second doped region of a second conductivity type formed in the semiconductor bulk, a channel region formed between the first doped region and the second doped region, a plurality of contacts formed on the first doped region, and a well of the second conductivity type formed in the semiconductor bulk and positioned between the channel and the contacts.
Abstract:
For low-voltage and high-speed operation of a MOSFET in an integrated circuit, a small voltage is applied to a source node, causing slight forward bias of the source junction and thereby reducing its threshold voltage. Due to the combined effects of the bias at the source node and a body effect, the reduction in threshold voltage is larger than the absolute value of the source voltage being applied. A performance improvement over simply applying a bias voltage to the body (well) results. Detection of an event can be used to apply the performance boost to a critical path in the integrated circuit only when needed. Upon detection of a logic event, which determines that a signal will propagate through the critical path shortly thereafter, the source-node bias for circuit elements in the critical path can be adjusted in time for a speed improvement. However, the source remains at another potential when no signal is passing through the critical-path, to save power when not boosting speed.
Abstract:
The present invention provides a buffer for voltage ringing and overshooting suppression that improves the ESD protection. The buffer comprises a transistor and a resistance modulator. The resistance modulator is connected in series between an IC pad and a power node. The resistance modulator provides a first resistance during normal circuit operation, and provides a second resistance that is lower than the first resistance during an ESD event.
Abstract:
A high-voltage tolerance input buffer and a high-voltage ESD protection circuit connected to a pad of an integrated circuit for preventing rapid gate oxide aging. The high-voltage tolerance input buffer of the present invention comprises a voltage-sharing circuit and a switch circuit, wherein the voltage-sharing circuit is connected between the pad and a power rail and generates a reference voltage not higher than the voltage of the pad. The switch circuit is connected to the voltage-sharing circuit and comprises a control gate to control the switching operation of the switch circuit according to the reference voltage. The present invention can be implemented to solve the rapid gate oxide aging problem without incurring any change in the original process flow by employing a voltage-sharing circuit.
Abstract:
An IC package architecture with electrostatic discharge (ESD) protection is provided for use on an IC package for the purpose of allowing the ESD robustness of the IC package to be farther enhanced and the structural complexity of the same to be further simplified as compared to the prior art. The IC package includes a lead frame having a die pad for mounting an IC chip thereon, a plurality of package pins with some no-connect pins which are grouped into at least one no-connect pin unit, each unit consisting of one single no-connect pin or a number or consecutively arranged no-connect pins. ESD protection can be provided to any no-connect pin unit on the IC package either by arranging a pair of power pins proximate to the respective sides of the no-connect pin unit; by arranging a power pin proximate to one side of the no-connect pin unit and an elongated conductive tongue proximate to the other side; or by arranging a pair of elongated conductive tongues proximate to the respective sides of the no-connect pin unit. This provides ESD protection to all the no-connect pins in the no-connect pin unit without having to connect them to ESD protection circuits.