摘要:
A first example embodiment provides a method of removing first spacers from gates and incorporating a low-k material into the ILD layer to increase device performance. A second example embodiment comprises replacing the first spacers after silicidation with low-k spacers. This serves to reduce the parasitic capacitances. Also, by implementing the low-k spacers only after silicidation, the embodiments' low-k spacers are not compromised by multiple high dose ion implantations and resist strip steps. The example embodiments can improve device performance, such as the performance of a rim oscillator.
摘要:
A method for forming a device with both PFET and NFET transistors using a PFET compressive etch stop liner and a NFET tensile etch stop liner and two anneals in a deuterium containing atmosphere. The method comprises: providing a NFET transistor in a NFET region and a PFET transistor in a PFET region. We form a NFET tensile contact etch-stop liner over the NFET region. Then we perform a first deuterium anneal. We form a PFET compressive etch stop liner over the PFET region. We form a (ILD) dielectric layer with contact openings over the substrate. We perform a second deuterium anneal. The temperature of the second deuterium anneal is less than the temperature of the first deuterium anneal.
摘要:
A method of reducing hot carrier degradation and a semiconductor structure so formed are disclosed. One embodiment of the method includes depositing a silicon nitride layer over a transistor device, ion implanting a species into the silicon nitride layer to drive hydrogen from the silicon nitride layer, and annealing to diffuse the hydrogen into a channel region of the transistor device. The species may be chosen from, for example: germanium (Ge), arsenic (As), xenon (Xe), nitrogen (N), oxygen (O), carbon (C), boron (B), indium (In), argon (Ar), helium (He), and deuterium (De). The ion implantation modulates atoms in the silicon nitride layer such as hydrogen, nitrogen and hydrogen-nitrogen bonds such that hydrogen can be controllably diffused into the channel region.
摘要:
A method for forming, on a semiconductor substrate, a dielectric layer having a variable thickness and composition. The dielectric layer so formed can be used to form electronic devices such as MOSFETS and CMOSFETS that require gate dielectrics of different thicknesses. On a silicon substrate in accord with the preferred embodiment, the method requires the formation of three regions, two with SiO2 layers of different thicknesses and a third region of substrate with no oxide. A final thin layer of high-k dielectric is formed covering the three regions, so that the region with no oxide has the thinnest dielectric layer of only high-k material and the other two regions have the high-k dielectric over SiO2 layers of different thickness. A final layer of gate electrode material can be formed and patterned to form the required device structure.
摘要:
A method for forming a device with both PFET and NFET transistors using a PFET compressive etch stop liner and a NFET tensile etch stop liner and two anneals in a deuterium containing atmosphere. The method comprises: providing a NFET transistor in a NFET region and a PFET transistor in a PFET region. We form a NFET tensile contact etch-stop liner over the NFET region. Then we perform a first deuterium anneal. We form a PFET compressive etch stop liner over the PFET region. We form a (ILD) dielectric layer with contact openings over the substrate. We perform a second deuterium anneal. The temperature of the second deuterium anneal is less than the temperature of the first deuterium anneal.
摘要:
An example process to remove spacers from the gate of a NMOS transistor. A stress creating layer is formed over the NMOS and PMOS transistors and the substrate. In an embodiment, the spacers on gate are removed so that stress layer is closer to the channel of the device. The stress creating layer is preferably a tensile nitride layer. The stress creating layer is preferably a contact etch stop liner layer. In an embodiment, the gates, source and drain region have a silicide layer thereover before the stress creating layer is formed. The embodiment improves the performance of the NMOS transistors.
摘要:
The present invention provides a method of inducing stress in a semiconductor device substrate by applying an ion implantation to a gate region before a source/drain annealing process. The source/drain region may then be annealed along with the gate which will cause the gate to expand in certain areas due to said ion implantation. As a result, stress caused by said expansion of the gate is transferred to the channel region in the semiconductor substrate.
摘要:
The present invention provides a method of inducing stress in a semiconductor device substrate by applying an ion implantation to a gate region before a source/drain annealing process. The source/drain region may then be annealed along with the gate which will cause the gate to expand in certain areas due to said ion implantation. As a result, stress caused by said expansion of the gate is transferred to the channel region in the semiconductor substrate.
摘要:
An example method embodiment forms spacers that create tensile stress on the substrate on both the PFET and NFET regions. We form PFET and NFET gates and form tensile spacers on the PFET and NFET gates. We implant first ions into the tensile PFET spacers to form neutralized stress PFET spacers. The neutralized stress PFET spacers relieve the tensile stress created by the tensile stress spacers on the substrate. This improves device performance.
摘要:
A method of forming a silicon nitride-silicon dioxide, composite gate dielectric layer, offering reduced risk of boron penetration from an overlying boron doped polysilicon gate structure, has been developed. A porous, silicon rich silicon nitride layer is first deposited on a semiconductor substrate, allowing a subsequent thermal oxidation procedure to grow a thin silicon dioxide layer on the semiconductor substrate, underlying the porous, silicon rich silicon nitride layer. A two step anneal procedure is then employed with a first step performed in a nitrogen containing ambient to densify the porous, silicon rich silicon nitride layer, while a second step of the anneal procedure, performed in an inert ambient at a high temperature, reduces the foxed charge at the silicon dioxide-semiconductor interface.