Method and apparatus for light absorption and charged carrier transport

    公开(公告)号:US10096789B2

    公开(公告)日:2018-10-09

    申请号:US12601371

    申请日:2008-05-23

    Applicant: Jiangeng Xue

    Inventor: Jiangeng Xue

    Abstract: Embodiments of the invention pertain to the use of alloyed semiconductor nanocrystals for use in solar cells. The use of alloyed semiconductor nanocrystals offers materials that have a flexible stoichiometry. The alloyed semiconductor may be a ternary semiconductor alloy, such as AxB1-xC or AB1-yCy, or a quaternary semiconductor alloy, such as AxByC1-x-yD, AxB1-xCyD1-y or ABxCyD1-x-y (where A, B, C, and D are different elements). In general, alloys with more than four elements can be used as well, although it can be much harder to control the synthesis and quality of such materials. Embodiments of the invention pertain to solar cells having a layer incorporating two or more organic materials such that percolated paths for one or both molecular species are created. Specific embodiments of the invention pertain to a method for fabricating nanostructured bulk heterojunction that facilitates both efficient exciton diffusion and charge transport. Embodiments of the subject invention pertain to a solar cell having an architecture that allows for efficient harvesting of solar energy. The organic solar cell architecture can incorporate a host/guest (or matrix/dopant) material system that utilizes the long diffusion lengths for triplet excitons without compromising light absorption efficiency.

    STABLE AND ALL SOLUTION PROCESSABLE QUANTUM DOT LIGHT-EMITTING DIODES
    24.
    发明申请
    STABLE AND ALL SOLUTION PROCESSABLE QUANTUM DOT LIGHT-EMITTING DIODES 有权
    稳定和所有解决方案可处理量子点火发光二极管

    公开(公告)号:US20120138894A1

    公开(公告)日:2012-06-07

    申请号:US13382340

    申请日:2010-07-07

    Abstract: Embodiments of the invention are directed to quantum dot light emitting diodes (QD-LEDs) where the electron injection and transport layer comprises inorganic nanoparticles (I-NPs). The use of I-NPs results in an improved QD-LED over those having a conventional organic based electron injection and transport layer and does not require chemical reaction to form the inorganic layer. In one embodiment of the invention the hole injection and transport layer can be metal oxide nanoparticles (MO-NPs) which allows the entire device to have the stability of an all inorganic system and permit formation of the QD-LED by a series of relatively inexpensive steps involving deposition of suspensions of nanoparticles and removing the suspending vehicle.

    Abstract translation: 本发明的实施例涉及电子注入和传输层包含无机纳米颗粒(I-NP)的量子点发光二极管(QD-LED)。 使用I-NPs可以改善QD-LED比具有常规有机电子注入和传输层的QD-LED,并且不需要化学反应来形成无机层。 在本发明的一个实施方案中,空穴注入和输送层可以是金属氧化物纳米颗粒(MO-NP),其允许整个装置具有全部无机体系的稳定性并且允许通过一系列相对便宜的方式形成QD-LED 涉及沉积纳米颗粒悬浮液并除去悬浮载体的步骤。

    Solar-powered lighting module
    25.
    发明授权
    Solar-powered lighting module 有权
    太阳能照明模块

    公开(公告)号:US08950886B2

    公开(公告)日:2015-02-10

    申请号:US13319981

    申请日:2010-06-02

    Abstract: A solar-powered lighting module is provided, including a solar cell for generating electricity when exposed to light, a battery for storing charge from the generated electricity, and a light generating device powered by the stored charge. In an embodiment, the module further includes a controller that regulates the current transmitted between the components of the module. In a further embodiment, the module is incorporated into an interface to an environmentally controlled space and can be positioned to light an interior portion of the space. In another embodiment, the solar cell and light generating device are transparent to allow light to pass through the interface. In a further embodiment, tinted-color conjugated polymers incorporated into the module limit the spectrum of light that can pass through the interface. In yet another embodiment, a method of modifying an existing interface with such a module is provided.

    Abstract translation: 提供了一种太阳能照明模块,包括用于在暴露于光时发电的太阳能电池,用于存储来自发电的电荷的电池,以及由所存储的电荷供电的发光装置。 在一个实施例中,模块还包括控制器,其调节在模块的组件之间传输的电流。 在另一个实施例中,该模块被结合到与环境受控的空间的界面中,并且可以被定位成照亮该空间的内部部分。 在另一个实施例中,太阳能电池和发光装置是透明的,以允许光通过界面。 在另一个实施方案中,结合到模块中的着色共轭聚合物限制可以通过界面的光谱。 在另一个实施例中,提供了一种使用这种模块修改现有接口的方法。

    Method of forming an encapsulating electrode
    27.
    发明授权
    Method of forming an encapsulating electrode 有权
    形成封装电极的方法

    公开(公告)号:US08058093B2

    公开(公告)日:2011-11-15

    申请号:US11211656

    申请日:2005-08-26

    Abstract: An organic photosensitive optoelectronic device is formed in which the organic photoconductive materials are encapsulated by an electrode of the device. A first transparent film is provided that comprises a first electrically conductive material, arranged on a transparent substrate. A first photoconductive organic material is deposited over the first electrically conductive material. A metal is deposited at an initial rate of no more than 1 nm/s over the first photoconductive organic material, completely covering any exposed portions of the first photoconductive organic material and any exposed interfaces with the first photoconductive organic material to a thickness of no less than 10 nm. After the thickness of no less than 10 nm is obtained, the metal is sputtered at an increased rate at least three times the initial rate until a cumulative thickness of the metal completely covering the previously exposed portions of the first photoconductive organic material and the previously exposed interfaces with the first conductive organic material is at least 250 nm.

    Abstract translation: 形成有机光敏光电器件,其中有机光电导材料被器件的电极封装。 提供了第一透明膜,其包括设置在透明基板上的第一导电材料。 第一光导有机材料沉积在第一导电材料上。 在第一光导有机材料上以不超过1nm / s的初始速率沉积金属,完全覆盖第一光电导有机材料的任何暴露部分和与第一光电导有机材料的任何暴露界面,其厚度不小于 超过10nm。 在获得不小于10nm的厚度之后,以增加的速率溅射金属至少是初始速率的三倍,直到金属的累积厚度完全覆盖第一光导有机材料的先前暴露部分和先前暴露的 与第一导电有机材料的界面为至少250nm。

    Inkjet printing of microlenses for photonic applications
    28.
    发明授权
    Inkjet printing of microlenses for photonic applications 有权
    用于光子应用的微透镜喷墨打印

    公开(公告)号:US08040058B2

    公开(公告)日:2011-10-18

    申请号:US12664909

    申请日:2008-06-18

    CPC classification number: H01L51/5275 G02B3/0012 H01L51/447

    Abstract: The preparation of microlenses on a substrate and light emitting devices employing microlenses on the surface from which light is emitted is described. The miscrolenses are formed on a surface that has been coated to have functionality that promotes a sufficiently large contact angle of the microlense on the surface and contains functionality for bonding the microlense to the coating. The microlenses are formed on the coating by deposition of a microlense precursor resin as a microdrop by inkjet printing and copolymerizing the resin with the bonding functionality in the coating. The coating can be formed from a mixture of silane coupling agents that contain functionality in some of the coupling agents that is copolymeriable with the resin such that the microlens can be formed and bonded to the surface by photopolymerization.

    Abstract translation: 描述了在衬底上制备微透镜和在发射光的表面上使用微透镜的发光器件。 混合物形成在已经被涂覆以具有促进表面上的微透镜的足够大的接触角的官能度的表面上并且包含用于将微透镜结合到涂层的功能性的表面上。 通过喷墨印刷沉积作为微滴的微透镜前体树脂并使树脂与涂层中的结合官能团共聚,在涂层上形成微透镜。 涂层可以由硅烷偶联剂的混合物形成,所述硅烷偶联剂在一些可与树脂共聚的偶联剂中含有官能团,使得微透镜可以通过光聚合形成并结合到表面上。

    Bipolar organic devices
    29.
    发明授权
    Bipolar organic devices 有权
    双极有机器件

    公开(公告)号:US07061011B2

    公开(公告)日:2006-06-13

    申请号:US10721072

    申请日:2003-11-26

    Abstract: An organic device is provided, having a first electrode and a second electrode. A first organic layer is disposed between the first electrode and the second electrode. The first organic layer includes a first organic material, with a concentration of at least 50% molar, and a second organic material, with a concentration less than 50% molar. A second organic layer is also disposed between the first electrode and the second electrode. The second organic layer includes the second organic material, with a concentration of at least 50% molar, and the first organic material, with a concentration less than 50% molar. The first organic material may act as an n-dopant in the second organic layer, and the second organic material may act as a p-dopant in the first organic layer. Alternately, the first organic material may act as a p-dopant in the second organic layer, and the second organic material may act as an n-dopant in the first organic layer. Exemplary materials for the first and second organic materials include PTCDA and BTQBT. Devices that may be fabricated include organic light emitting devices, organic transistors, and organic photosensitive devices. Preferably, the electron affinity of the first organic material is within about 0.4 eV of the ionization potential of the second organic material, and more preferably within about 0.2 eV. The first and second organic layers may also be used in separate devices fabricated on the same substrate. A method of fabricating devices is provided, by co-depositing the first and second organic materials at different concentrations in different layers, such that a different material is the host in different layers.

    Abstract translation: 提供了具有第一电极和第二电极的有机器件。 第一有机层设置在第一电极和第二电极之间。 第一有机层包括浓度为至少50%摩尔的第一有机材料和浓度小于50%摩尔的第二有机材料。 第二有机层也设置在第一电极和第二电极之间。 第二有机层包括浓度至少为50%摩尔的第二有机材料和第一有机材料,其浓度小于50%摩尔。 第一有机材料可以在第二有机层中充当n掺杂剂,并且第二有机材料可以在第一有机层中充当p掺杂剂。 或者,第一有机材料可以在第二有机层中用作p掺杂剂,并且第二有机材料可以在第一有机层中充当n掺杂剂。 用于第一和第二有机材料的示例性材料包括PTCDA和BTQBT。 可以制造的器件包括有机发光器件,有机晶体管和有机光敏器件。 优选地,第一有机材料的电子亲和力在第二有机材料的电离电位的约0.4eV内,更优选在约0.2eV内。 第一和第二有机层也可以用在同一衬底上制造的分开的器件中。 提供一种制造器件的方法,通过在不同层中以不同浓度共沉积第一和第二有机材料,使得不同的材料是不同层中的主体。

    Top-Emission Organic Light-Emitting Devices with Microlens Arrays
    30.
    发明申请
    Top-Emission Organic Light-Emitting Devices with Microlens Arrays 有权
    具有微透镜阵列的顶级有机发光器件

    公开(公告)号:US20100201256A1

    公开(公告)日:2010-08-12

    申请号:US12668464

    申请日:2008-07-10

    CPC classification number: H05B33/22

    Abstract: Embodiments of the invention can provide organic light-emitting devices (OLEDs) with enhanced outcoupling efficiency. Specific embodiments can enhance the outcoupling efficiency by more than four times. Embodiments of the invention incorporate microlens 5 arrays on the emitting surface of a top-emission OLED. Incorporation of microlens arrays on the emitting surface of a top-emission OLED can greatly enhance the outcoupling efficiency in OLEDs. With a microlens array attached to the emitting surface, much of, if not all, of the waveguiding modes can be extracted. The microlens array can be fabricated using the inkjet printing method or using other methods, including molding.

    Abstract translation: 本发明的实施例可以提供具有增强的耦合效率的有机发光器件(OLED)。 具体实施例可以将输出耦合效率提高四倍以上。 本发明的实施例将微透镜5阵列结合在顶部发射OLED的发射表面上。 在顶部发射OLED的发射表面上并入微透镜阵列可以大大提高OLED中的耦合效率。 利用附着在发射表面的微透镜阵列,可以提取很多(如果不是全部)波导模式。 微透镜阵列可以使用喷墨印刷法或使用其它方法(包括成型)来制造。

Patent Agency Ranking