Abstract:
A fuse in one embodiment includes first and second leads. A fuse element provides electrical communication between the first and second leads. The fuse element includes a material with a melting point of less than 250° C. and acts as both an overcurrent fuse and a thermal fuse by melting when subjected to a predetermined current or upon reaching a predetermined temperature. A body houses the fuse element and portions of the first and second leads
Abstract:
An integrated overvoltage and overcurrent circuit protection device for use in telecommunication circuits. The integrated circuit protection device combines a overcurrent device such as a fuse and a overvoltage protection device such as a thyristor to respectively protect against overcurrent conditions and transient overvoltages. Integration of the two devices in a common package ensures proper coordination and matching of the components, reduces the final product cost and reduces the physical space required on a telecommunications circuit for overvoltage and overcurrent circuit protection.
Abstract:
A connector port for providing power to a serial device and termination of differential signals received therefrom is provided. The port includes circuitry providing a data interface and a power interface. The data interface is operably connected between an input differential wire pair and an output differential wire pair for providing termination of the input wire pair and transmission of signal onto the output wire pair. Further, the power interface includes a fuse link operably connected between a voltage input and a voltage output for providing overcurrent protection.
Abstract:
An integrated circuit die having on board protection against electrical overstress (EOS) transients. A device having an integrated circuit die with an outer periphery and a functional die area. A plurality of conductive input/output pads are formed on the integrated circuit die. A first conductive guard rail is disposed on the integrated circuit die and forms a gap between each one of the input/output pads. A voltage variable material is disposed in the gaps between the conductive guard rail and the input/output pads. A plurality of electrical leads are electrically connected to a respective one of the plurality of conductive input/output pads. At normal operating voltages, the voltage variable material is non-conductive. However, in response to an EOS transient, the voltage variable material switches to a low resistance state, providing a conductive path between the conductive guard rail and the input/output pads.
Abstract:
A method for fabricating transient voltage protection devices is described wherein a gap between a ground conductor and another conductor is formed using a diamond dicing saw. Substrate material selection and includes specific ceramic materials designed to optimize performance and manufacturability. An overlay layer can be provided to minimize burring of the conductors during formation of the gap.
Abstract:
A method for manufacturing a subminiature fuse includes the steps of applying metallized coatings to surfaces at axially opposite ends of a hollow fuse body, placing a fuse element in an internal cavity in the fuse body, the fuse element extending from the first end to the second end of the cavity, placing a one of a solder and brazing preform and end termination at each of the first and second ends of the cavity, and heating the assembled fuse body, fuse element, solder preforms and end terminations to a temperature sufficient to cause the solder preforms to bond the fuse element to the end terminations and for the end terminations to bond with the metallized end portions of the fuse body, wherein the end terminations form hermetic seals closing the ends of the cavity. A subminiature fuse according to the invention includes a fuse body with a fuse element diagonally disposed in the body. The fuse body includes metallized end portions to which the end terminations are bonded. One of a solder and brazing preform bond the fuse element to the end terminations.
Abstract:
Electrostatic discharge protection, also known as ESD protection, is provided in the form of a discrete array with a voltage variable material (VVM) or a VVM device. The array is fabricated with a common electrode for connection to ground, and one or more electrodes configured for connection to an electrical component. The electrical component is a connector attached to an electrical circuit containing devices subject to damage by ESD events. The array is placed into a pocket or space on the connector and is held in place mechanically by spring force or by soldering to leads or electrodes of the connector. The array may be soldered to a ground connection or held in place by pressure, such as from a spring or from an outer housing or shell. In some embodiments, the array is removable from the component without affecting component circuits other than removal of ESD protection.
Abstract:
A surface mount fuse in one embodiment includes an insulative body, first and second conductive and caps attached to the insulative body, each end cap defining an aperture, and a fuse element extending (i) through the insulative body and the apertures and (ii) along outside surfaces of the first and second conductive end caps in such a way that solder used to attach the first and second conductive end caps to an external medium also fastens the fuse element to the first and second end caps.
Abstract:
A fuse element includes a substrate disposed between first and second terminals. The substrate includes an electrically insulative material. A conductive film is disposed on a first surface of the substrate and in electrical contact with the first terminal and second terminals.
Abstract:
In one aspect of the present invention, subminiature fuses are soldered to a PCB via clips attached to the fuse end caps. The clips are physically attached to the PCB pads, enabling the fuse to be replaced if needed and providing thermal decoupling between the fuse and the heating sinking solder/PCB pads. The fuse and clips can also be picked and placed in one operation. In another aspect, improved fuse clips are provided that include tabs that separate the housing portions of the clips from the heating sinking solder/PCB pads. Such improved clips further enhance thermal decoupling. In a further aspect, an improved fuse is provided, in which the thermal decoupling tabs just described are provided directly with the fuse. In yet a further aspect, a thermally insultive fuse body is provided to further decouple the fuse element from its surroundings.