Abstract:
A method (of manufacturing a semiconductor device) includes, for a layout diagram stored on a non-transitory computer-readable medium, generating the layout diagram including: populating a row which extends in a first direction with a group of cells, each cell representing a circuit, and first and second side boundaries of each cell being substantially parallel and extending in a second direction which is substantially perpendicular to the first direction; locating, relative to the first direction, cells so that neighboring ones of the cells are substantially abutting; and reducing an aggregate leakage tendency of the group by performing at least one of the following, (A) changing an orientation of at least one of the cells, or (B) changing locations correspondingly of at least two of the cells.
Abstract:
A method for forming an integrated device is provided. The method includes the following operations. A first circuit layout having a first power path and a second power path is provided. The first power path and the second power path are aligned in a first direction. A first pitch between the first power path and the second power path is analyzed. It is determined whether the first pitch is less than a threshold pitch. If the first pitch is less than the threshold pitch, the second power path is modified in a second direction. The second direction is perpendicular to the first direction.
Abstract:
In some embodiments, in a method, placement of a design layout is performed. The design layout includes a power rail segment, several upper-level power lines and several cells. The upper-level power lines cross over and bound the power rail segment at where the upper-level power lines intersect with the power rail segment. The cells are powered through the power rail segment. For each cell, a respective current through the power rail segment during a respective SW of the cell is obtained. One or more groups of cells with overlapped SWs are determined. One or more EM usages of the power rail segment by the one or more groups of cells using the respective currents of each group of cells are obtained. The design layout is adjusted when any of the one or more EM usages of the power rail segment causes an EM susceptibility of the power rail segment.
Abstract:
The invention relates to a contact structure of a semiconductor device. An exemplary structure for a semiconductor device comprises an insulation region over a substrate; a gate electrode layer over the insulation region comprising a gate middle line; a first contact structure over the insulation region adjacent to the gate electrode layer comprising a first middle line, wherein the first middle line and the gate middle line has a first distance; and a second contact structure over the insulation region on a side of the gate electrode layer opposite to the first contact structure comprising a second middle line, wherein the second middle line and the gate middle line has a second distance greater than the first distance.
Abstract:
In some embodiments, in a method, cell layouts of a plurality of cells are received. For each cell, a respective constraint that affects a geometry of an interconnect to be coupled to an output pin of the cell in a design layout is determined based on a geometry of the output pin of the cell in the cell layout.
Abstract:
An embodiment cell shift scheme includes abutting a first transistor cell against a second transistor cell and shifting a place and route boundary away from a polysilicon disposed between the first transistor cell and the second transistor cell. In an embodiment, the cell shift scheme includes shifting the place and route boundary to prevent a mismatch between a layout versus schematic (LVS) netlist and a post-simulation netlist.
Abstract:
Embodiments of mechanisms for forming power gating cells and virtual power circuits on multiple active device layers are described in the current disclosure. Power gating cells and virtual power circuits are formed on separate active device layers to allow interconnect structure for connecting with the power source be formed on a separate level from the interconnect structure for connecting the power gating cells and the virtual power circuits. Such separation prevents these two types of interconnect structures from competing for the same space. Routings for both types of interconnect structures become easier. As a result, metal lengths of interconnect structures are reduced and the metal widths are increased. Reduced metal lengths and increased metal widths reduce resistance, improves resistance-capacitance (RC) delay and electrical performance, and improves interconnect reliability, such as reducing electro-migration.
Abstract:
A die includes a plurality of rows of standard cells. Each of all standard cells in the plurality of rows of standard cells includes a transistor and a source edge, wherein a source region of the transistor is adjacent to the source edge. No drain region of any transistor in the each of all standard cells is adjacent to the source region.
Abstract:
An integrated circuit includes a first and a second standard cell. The first standard cell includes a first gate electrode, and a first channel region underlying the first gate electrode. The first channel region has a first channel doping concentration. The second standard cell includes a second gate electrode, and a second channel region underlying the second gate electrode. The second channel region has a second channel doping concentration. A dummy gate includes a first half and a second half in the first and the second standard cells, respectively. The first half and the second half are at the edges of the first and the second standard cells, respectively, and are abutted to each other. A dummy channel is overlapped by the dummy gate. The dummy channel has a third channel doping concentration substantially equal to a sum of the first channel doping concentration and the second channel doping concentration.
Abstract:
The invention relates to a contact structure of a semiconductor device. An exemplary structure for a semiconductor device comprises an insulation region over a substrate; a gate electrode layer over the insulation region comprising a gate middle line; a first contact structure over the insulation region adjacent to the gate electrode layer comprising a first middle line, wherein the first middle line and the gate middle line has a first distance; and a second contact structure over the insulation region on a side of the gate electrode layer opposite to the first contact structure comprising a second middle line, wherein the second middle line and the gate middle line has a second distance greater than the first distance.