Abstract:
Currently automobiles use embedded sensors and computational powers for performance optimization. For better performance and maintenance knowing driver and driving style is important. It is known that driver identification can be achieved using dedicated sensors. Since these are external sensors they add to cost and also deployment of many sensors increases operational and maintenance overhead. Embodiments of the present disclosure obtain GPS data including trip information pertaining to a vehicle being driven by a driver and features are extracted from trip information which are ranked by comparing these features with features associated with trip information of other drivers to selectively identify and obtain ranked features. Value of each ranked feature is compared with value of corresponding feature pertaining to driving patterns and an abnormality score for each relevant feature is generated and the driver is authenticated based on the abnormality score.
Abstract:
A system and a method for mobile sensing data processing are provided. The method includes, receiving one or more requests from one or more applications installed at a client device to obtain a processed sensing data obtained in response to execution of one or more tasks by the application using a set of sensors. Raw data is extracted from the set of sensors in response to the execution of the tasks. A data stream is configured to include sensor data and a task information associated with the tasks. The client device is connected with the server to transmit the data stream. The server outputs the processed sensing data upon processing the data stream and the task information by using one or more task specific models stored at the server. The processed sensing data is received from the server and provided to the applications.
Abstract:
A method and system for identifying personal context of a user having a portable mobile communication device at a particular location for deriving social interaction information of the user, wherein the user within a predefined range is identified using personal context of the user at the particular location and the identified personal context of the user is assigned with the confidence value. Further the current location information of the user within the particular location is obtained by fusing assigned confidence value. Further the proximity of the user in the current location is estimated by finding the accurate straight line distance between users. Further the two users having similar current location information at the particular location are grouped together with the predefined density criteria. Finally the social interaction information of the user is derived by multimodal sensor data fusion at the fusion engine and represented using a human network graph.
Abstract:
A method, system and apparatus for determining crowdedness at a location, using a first portable communication device having a proximity sensor, wherein the location of a first user is determined using the first portable communication device having an application installed on a memory module thereof, wherein the application is configured to connect to a location sensor embedded in the first portable communication device. The method and system further comprises sensing and identifying a second portable communication device in vicinity of the first user, followed by transmitting a media access control address (MAC address) of the identified second portable communication device to a remote fusion server. Further removing redundancies pertaining to the identified second portable communication device based on the MAC address received by the remote fusion server using a fusion algorithm to determine the crowdedness at the determined location.
Abstract:
A mobile device and a method for estimation of direction of motion of a user are described. The mobile device comprises an inertial sensor to capture acceleration signals based on motion of the user and a direction estimation module. The direction estimation module determines direction of gravity based on filtering acceleration values obtained from captured the acceleration signals using a low-pass filter to identify a plane orthogonal to the direction of gravity. The plane orthogonal to the gravity comprises two orthogonal axes orthogonal to the direction of gravity. Further, displacement values are evaluated based on a user input for placement of the mobile device with respect to user's body, and integration of the acceleration values across the two orthogonal axes with respect to time. A direction of motion of the user is estimated based on a ratio of the displacement values along the two orthogonal axes.
Abstract:
Disclosed are a device, system and methods for detecting an anomaly associated with driving of a vehicle. Z-axis acceleration data is determined at the device. Based on the Z-axis acceleration data, jerk energies are computed and transmitted to the system for analysis. Further, the jerk energies are received for a plurality of trips at the system. Further, at the system, statistical analysis is performed on the jerk energies for determining a hazard rate for each trip of the plurality of trips. Then based on the hazard rate determined for each of the plurality of trips, a trend analysis is performed. Based on the trend analysis, any anomaly associated with the driving of the vehicle is detected. Further, the anomaly detected may be notified to a person associated with the device or with a monitoring terminal.
Abstract:
The disclosure herein relates to methods and systems for generating an end-to-end de-smoking model for removing smoke present in a video. Conventional data-driven based de-smoking approaches are limited mainly due to lack of suitable training data. Further, the conventional data-driven based de-smoking approaches are not end-to-end for removing the smoke present in the video. The de-smoking model of the present disclosure is trained end-to-end with the use of synthesized smoky video frames that are obtained by source aware smoke synthesis approach. The end-to-end de-smoking model localize and remove the smoke present in the video, using dynamic properties of the smoke. Hence the end-to-end de-smoking model simultaneously identifies the regions affected with the smoke and performs the de-smoking with minimal artifacts. localized smoke removal and color restoration of a real-time video.
Abstract:
The disclosure herein relates to methods and systems for localized smoke removal and color restoration of a real-time video. Conventional techniques apply the de-smoking process only on a single image, by finding the regions having the smoke, based on manual air-light estimation. In addition, regaining original colors of de-smoked image is quite challenging. The present disclosure herein solves the technical problems. In the first stage, video frames having the smoky and smoke-free video frames are identified, from the video received in the real-time. In the second stage, an air-light is estimated automatically using a combined feature map. An intermediate de-smoked video frame for each smoky video frame is generated based on the air-light using a de-smoking algorithm. In the third and the last stage, a smoke-free video reference frame is used to compensate for color distortions introduced by the de-smoking algorithm in the second stage.
Abstract:
While performing heart rate estimation of a user, if the user is in motion, a signal is measured and is likely to have noise data, which in turn affects accuracy of estimated heart rate value. Method and system for heart rate estimation when the user is in motion is disclosed. The system estimates value of a noise signal present in a measured PPG signal by performing a Principal Component Analysis (PCA) of an accelerometer signal collected along with the PPG signal. The system further estimates value of a true cardiac signal for a time window, based on value of the true cardiac signal in a pre-defined number of previous time windows. The system then estimates frequency spectrum of a clean PPG signal based on the estimated noise signal and the true cardiac signal. The system further performs heart rate estimation based on the clean PPG signal.
Abstract:
This disclosure relates generally to detection of mild cognitive impairments in subjects. The method and system proposed provides a continuous/seamless monitoring platform for MCI detection in subjects by continuously monitoring routine activities of subjects (Activities of Daily Living (ADL)) in a smart environment using plurality of passive, unobtrusive, binary, unobtrusive non-intrusive sensors embedded in living infrastructure. The proposed method and system detects symptoms of MCI at the onset of the disease, while also addressing issue of sensor failures that causes gaps in the data. The collected sensor data is pre-processed in several stages which includes which includes pre-processing of sensor data, behavior deviation detection, and abnormality detection and so on. Further, the disclosure also proposes an autoencoder based technique, to reduce the dimension of the data to find personalized deviations in behavior of a subject which is used to detect if a subject could be a potential case of MCI.