Abstract:
Described herein is an apparatus for controlling an actuator made from a shape-memory alloy includes a first layer made from a thermally conductive material and a second layer. The second layer is made from a thermally conductive material. The apparatus also includes at least one thermoelectric heater positioned between the first and second layers. Additionally, the apparatus includes at least one thermoelectric cooler positioned between the first and second layers.
Abstract:
A heated roller shade system is provided. The heated roller shade system includes a roller located in a cavity defined between an inner wall of a vehicle and an outer wall of the vehicle. The roller shade system also includes a shade coupled to the roller. The roller is configured to selectively move the shade between a deployed position and an open position. The roller shade system also includes a heating mechanism coupled to at least one of the roller and the shade. The heating mechanism facilitates increasing a temperature of at least one of the roller and the shade.
Abstract:
A venting system is configured to be within an internal cabin of an aircraft. The venting system includes a door configured to be disposed within a frame of a wall of an enclosed area of the internal cabin. The door is configured to move between a closed position and an open position. A latch is configured to retain the door in the closed position. A sensor is operatively coupled to the latch. In response to detecting a predetermined pressure, the sensor is configured to trigger the latch to disengage the door from one or both of the frame or the wall to allow the door to move from the closed position to the open position.
Abstract:
Examples are disclosed herein that relate to vehicles, composite parts, and three-dimensional (3D) textile preforms for composite parts. In one example, a 3D textile preform for a composite part comprises a flange portion and a stiffener portion extending upwardly from the flange portion. The stiffener portion comprises a first wall portion that extends from the flange portion and a second wall portion that extends from the flange portion at a location spaced from the first wall portion. A connecting portion connects the first wall portion and the second wall portion at a location spaced from the flange portion.
Abstract:
Stiffened skin panels comprise alternating truss core portions and solid laminate portions sandwiched between inner and outer facesheets, all formed from a fiber reinforced thermoplastic. The components of the panels are co-consolidated using induction heating. The panels are stiffened with spars fastened to the solid laminate portions.
Abstract:
A movable surface of an aircraft has a front spar extending along a spanwise direction between opposing movable surface ends. The movable surface also includes a plurality of ribs defining a plurality of bays between adjacent pairs of the ribs. Each rib extends between the front spar and a trailing edge portion of the movable surface. The movable surface further includes an upper and a lower skin panels coupled to the ribs and the front spar. In addition, the bull surface includes a plurality of bead stiffeners coupled to an inner surface of at least one of the upper skin panel and the lower skin panel. The bead stiffeners within the bays are spaced apart from each other and are oriented non-parallel to the front spar and have a bead stiffener cap having opposing cap ends respectively locate proximate the front spar and the trailing edge portion.
Abstract:
Systems and processes that integrate thermoplastic and shape memory alloy materials to form an adaptive composite structure capable of changing its shape. For example, the adaptive composite structure may be designed to serve as a multifunctional adaptive wing flight control surface. Other applications for such adaptive composite structures include in variable area fan nozzles, winglets, fairings, elevators, rudders, or other aircraft components having an aerodynamic surface whose shape is preferably controllable. The material systems can be integrated by means of overbraiding (interwoven) with tows of both thermoplastic and shape memory alloy materials or separate layers of each material can be consolidated (e.g., using induction heating) to make a flight control surface that does not require separate actuation.
Abstract:
A method of bonding materials may comprise defining a bond interface between two materials in a cure zone on a surface of an object, and non-conductively heating the bond interface without directly heating the surface outside of the cure zone. Non-conductively heating the bond interface may involve applying microwave radiation to the bond interface.
Abstract:
Manufacturing a thermoplastic composite tubular structure embedded with a first load fitting comprising the steps of braiding a first plurality of inner layers of thermoplastic composite material around a soluble, expandable mandrel. A first load fitting is positioned on the first plurality of inner layers of thermoplastic composite material. A second plurality of outer layers of thermoplastic composite material is braided around the first load fitting and the mandrel so as to form an overbraided mandrel embedded with the first load fitting. The overbraided mandrel is installed into a matched tooling assembly and heated at a specified heating profile in order to consolidate the first plurality of inner layers of thermoplastic composite material and the second plurality of outer layers of thermoplastic composite material with the first load fitting so as to form a thermoplastic composite tubular structure embedded with the first load fitting. A second load fitting may be positioned on the first plurality of inner layers of thermoplastic composite material.
Abstract:
A system for heating a shape memory alloy (SMA) actuator may include an SMA actuator, a smart susceptor, a plurality of induction coils, and a control module. The SMA actuator may have at least one layup. The SMA actuator may be selectively heated to a transition temperature. The smart susceptor may be in thermal contact with the at least one layup of the SMA actuator. The induction heating coils may be configured to receive an alternating current and generate a magnetic field based on the alternating current. The magnetic field may create an eddy current in at least one of the SMA actuator and the smart susceptor to heat the SMA actuator to the transition temperature. The control module may be configured to drive the alternating current supplied to the induction heating coils.