Abstract:
A multi-element electronic chip device is manufactured which has a plurality of elements such as film resistors 2 or the like on one insulating substrate 1 by carrying out a step of performing primary division of a ceramic material plate A corresponding to a multiplicity of insulating substrates 1 into ceramic bars A′ each corresponding to a row of plural insulating substrates 1, a step of forming grooves 6 in lengthwise side faces of each ceramic bar A′ before forming side electrodes 5 for both ends of each film resistor 2 or forming grooves 6 after forming side electrodes 5, and a step of performing secondary division of the ceramic bar A′ into individual insulating substrates 1. This structure is a low cost solution for preventing the side electrodes 5 for different film resistors 2 from connecting with each other.
Abstract:
A method of making a chip resistor is provided. The method includes the following steps. First, a resistive element is provided on a substrate. Then, a resin layer is formed on the substrate to enclose the resistive element. Then, the substrate and the resin layer are cut in this order. To prevent the breakage of the substrate during the cutting, the resin layer has better machinability than the substrate.
Abstract:
A chip resistor includes a resistor element of a rectangular solid made of an alloy composed of high-resistant metal and low-resistant metal. The resistor has connection terminal electrodes disposed at the ends of the resistor element that are spaced longitudinally of the rectangular solid. The resistance of the chip resistor is lowered without incurring an increase in the temperature coefficient of resistance and the weight. A plating layer is formed on the resistor element, where the plating element is made of pure metal having a lower resistance that that of the alloy constituting the resistor element.
Abstract:
A resistor, including a resistive element made of a metal plate, has a low resistance resulting from connection terminal electrodes formed on both ends of the lower surface of the resistive element. The object thereof is to achieve weight reduction and lower costs by reducing the height of the resistor. To achieve the above object, the ends of the lower surface of the resistive element are provided with recesses for accommodating the connection terminal electrodes, while at least the intermediate area of the lower surface of the resistive element between the connection terminal electrodes is covered with an insulator. Alternatively, a recess may be formed in the middle of the lower surface of the resistive element for using the ends of the lower surface as a pair of connection terminal electrodes, the recess being internally covered with an insulator.
Abstract:
A chip resistor includes a resistor element in the form of a chip, and at least two electrodes formed on the resistor element. The resistor element includes an upper surface, a lower surface, and two end surfaces extending between the upper and the lower surfaces and spaced from each other. The two electrodes are provided on the lower surface of the resistor element. Each of the end surfaces of the resistor element is formed with a conductor film integrally connected to a corresponding one of the electrodes. The conductor film is made of copper, for example, and is higher in solder-wettability than the resistor element.
Abstract:
A chip resistor includes a metal resistor element having a flat lower surface. The lower surface is formed with two electrodes spaced from each other, and an insulating resin film is formed between these electrodes. Each of the electrodes partially overlaps the insulating film so that a portion of the insulating film is inserted between each of the electrodes and the lower surface of the resistor element.
Abstract:
A chip resistor includes a resistive element (1), an insulation layer (4) formed in a back surface of the flat surface, and two electrodes (3) spaced from each other via the insulation layer. Each electrode (3) makes contact with the insulation layer (4). Each electrode (3) has a lower surface formed with a solder layer (39).
Abstract:
A chip resistor includes a resistor element, a reinforcing member, and a pair of electrodes. The resistor element includes a first surface and a second surface opposite to the first surface. The reinforcing member is bonded to the first surface of the resistor element. The pair of electrodes are formed on the second surface of the resistor element. The resistor element is formed with a slit located between the pair of electrodes.
Abstract:
A chip resistor includes a resistive element (1), an insulation layer (4) formed in a back surface of the flat surface, and two electrodes (3) spaced from each other via the insulation layer. Each electrode (3) makes contact with the insulation layer (4). Each electrode (3) has a lower surface formed with a solder layer (39).
Abstract:
A chip resistor (A1) includes a chip-like resistor element (1), two electrodes (31) spaced from each other on the bottom surface (1a) of the resistor element, and an insulation film (21) between the two electrodes. Each electrode (31) has an overlapping portion (31c) which overlaps the insulation film (21) as viewed in the vertical direction.