摘要:
In order to stably generate a high voltage of a prescribed level, a Vpp detection circuit which is activated in response to an activation signal for comparing the high voltage with a reference voltage is forcibly brought into an active state for a prescribed period under control of an initial control circuit.
摘要:
A semiconductor device allowing control of its threshold voltage without requiring change in the materials of its gate electrodes and suitable for high density integration is disclosed. The semiconductor device includes a p type monocrystalline silicon substrate 1 having a cylindrical portion with inner and outer surfaces and extending in a vertical direction. A first gate electrode 8 and a second gate electrode 10 are disposed at the inner surface and the outer surface of the cylindrical portion 2, respectively. A source/drain region 5 is formed on the top end of the cylindrical portion 2, while a source/drain region 3 is formed on the inner bottom surface of the cylindrical portion 2. Therefore, the cylindrical portion 2 can be utilized as a channel region of an MIS field effect transistor. The threshold voltage of the transistor can easily be controlled by applying separate voltages to the two gate electrodes, the first electrode and the second electrode.
摘要:
First, a low-concentration impurity layer is formed by obliquely implanting an n-type impurity at a prescribed angle with respect to the surface of a p-type semiconductor substrate, using a gate electrode formed on the semiconductor substrate as a mask. Thereafter a sidewall spacer is formed on the sidewall of the gate electrode, and then a medium-concentration impurity layer is formed by obliquely implanting an n-type impurity to the surface of the semiconductor substrate. Thereafter a high-concentration impurity layer is formed by substantially perpendicularly implanting an n-type impurity with respect to the surface of the semiconductor substrate. According to this method, the low-concentration impurity layer in source and drain regions having triple diffusion structures can be accurately overlapped with the gate electrode, with no requirement for heat treatment for thermal diffusion.
摘要:
A control circuit & mode register outputs a signal responsive to each command to a VDC control circuit. The VDC control circuit outputs a signal PWRUP changing the quantity of a through current Ic of a comparator stored in a VDC in response to the command. The VDC control circuit internally generates a signal of which pulse width corresponds to a prescribed delay time, in response to input of the command. Therefore, activation of each bank may not be monitored but current consumption can be reduced by preferably controlling a power supply current while minimizing the number of delay circuits and wires.
摘要:
A semiconductor integrated circuit includes a node for the power supply voltage for array that is connected to a sense amplifier, a decoupling capacitance connected to the node for the power supply voltage for array, a voltage-down converter connected to the node for the power supply voltage for array and generating a largest voltage stored in a memory cell, and two voltage-down converters connected to the node for the power supply voltage for array and generating a voltage higher than the largest voltage, and boosts the voltage of the node for the power supply voltage for array to attain a voltage higher than the largest voltage in the stand-by state and activates the voltage-down converter generating the largest voltage in operation.
摘要:
A semiconductor integrated circuit includes a node for the power supply voltage for array that is connected to a sense amplifier, a decoupling capacitance connected to the node for the power supply voltage for array, a voltage-down converter connected to the node for the power supply voltage for array and generating a largest voltage stored in a memory cell, and two voltage-down converters connected to the node for the power supply voltage for array and generating a voltage higher than the largest voltage, and boosts the voltage of the node for the power supply voltage for array to attain a voltage higher than the largest voltage in the stand-by state and activates the voltage-down converter generating the largest voltage in operation.
摘要:
A MOS FET comprises a pair of source and drain impurity regions, a gate oxide film and a gate electrode. The source and drain regions have an LDD structure in which high concentration impurity regions and low concentration impurity regions are set off. The gate electrode is formed to extend over the channel region and contains sidewalls overlying the low concentration impurity regions. In addition, portions of the gate oxide film located between the sidewalls of the gate electrode and the respective low concentration impurity regions are formed to have a film thickness larger than that of the portion located between the gate electrode and the channel region. The thick portion of the oxide film underlying the gate sidewalls form a charge storage layer which reduces the resistance of the low impurity concentration region while minimizing the gate capacitance. In another example, conductive sidewall spacers are formed on sidewalls of a gate electrode through an insulating film. The sidewall spacers are connected with source and drain electrode connections or directly with source and drain impurity regions. Hot carriers generated near the drain are taken out from a gate insulating layer through conductive sidewall spacers. Accordingly, increase of the resistance due to trapped hot carriers can be prevented.
摘要:
A method of and an apparatus for removing a naturally grown oxide film and contaminants on the surface of a semiconductor substrate and then forming a thin film on the cleaned surface. The semiconductor substrate is placed in a pretreatment chamber and then hydrogen chloride gas is introduced into the chamber. Then, the semiconductor substrate is heated at a temperature between 200.degree..about.700.degree. C. and the surface of the semiconductor substrate is irradiated with ultraviolet rays, whereby the naturally grown oxide film and other contaminants on the semiconductor substrate can be removed. Then, a thin film is formed on the cleaned surface of the semiconductor substrate by a CVD method or a sputter method. According to this method, the naturally oxide film and other contaminants can be removed from the surface of the semiconductor substrate at a low temperature and the thin film can be formed on the cleaned surface. As a result, an interface structure between the semiconductor substrate and the thin film can be controlled to be in a preferable state.
摘要:
A MOS FET comprises a pair of source and drain impurity regions, a gate oxide film and a gate electrode. The source and drain regions have an LDD structure in which high concentration impurity regions and low concentration impurity regions are set off. The gate electrode is formed to extend over the channel region and contains sidewalls overlying the low concentration impurity regions. In addition, portions of the gate oxide film located between the sidewalls of the gate electrode and the respective low concentration impurity regions are formed to have a film thickness larger than that of the portion located between the gate electrode and the channel region. The thick portion of the oxide film underlying the gate sidewalls form a charge storage layer which reduces the resistance of the low impurity concentration region while minimizing the gate capacitance. In another example, conductive sidewall spacers are formed on sidewalls of a gate electrode through an insulating film. The sidewall spacers are connected with source and drain electrode connections or directly with source and drain impurity regions. Hot carriers generated near the drain are taken out from a gate insulating layer through conductive sidewall spacers. Accordingly, increase of the resistance due to trapped hot carriers can be prevented.
摘要:
A conductive resist film is used as a mask in ion implantation. A portion of the conductive resist film is electrically connected to a semiconductor substrate. The charge of ions which enter the conductive resist film in ion implantation flows into the semiconductor substrate and dissipates therein.